
Assertion-Carrying Certificates
Waqar Aqeel, Zachary Hanif, James Larisch, Olamide Omolola,

Taejoong Chung, Dave Levin, Bruce Maggs, Alan Mislove, Bryan Parno, Christo Wilson
Duke University, University of Maryland, Harvard University, Graz University of Technology,

Virginia Tech, Northeastern University, Carnegie Mellon University

Abstract—Today’s TLS certificates are notoriously difficult to
augment with new features or even new options under the existing
set of features. As a result, the public key infrastructure is unable
to quickly evolve to meet new threats, new deployment consid-
erations, and new capabilities. We observe that, fundamentally,
certificates are a series of logical constraints, limiting what a
given principal is able to do. We sketch the design of assertion-
carrying certificates: certificates that can carry a small amount of
code that can dynamically add to these constraints. We present
what we believe to be the ideal goals of such a language, and
how our initial design in Prolog addresses them. We believe that
this modest change to certificates could empower a far more
evolvable certificate ecosystem.

I. INTRODUCTION

The importance of the public key infrastructure (PKI) to
the success of the Internet cannot be overstated: it is what
provides the security in HTTPS, and what ultimately allows
users to know with whom they are communicating online. At
the core of the PKI are certificates: signed attestations that
bind a human-understandable name (the “subject name”) to
a cryptographic public key. Certificates also contain myriad
other information, including expiration dates, the certificate
authority (CA) that signed the certificate, and various exten-
sions that have been added over the years.

Despite its incredible importance, the PKI suffers from a
number of issues, chief among them:

It is extremely difficult to evolve the PKI. The specification
for certificates (X.509) dates back to 1988, and the current
version (v3) is from 1999. Updating even simple properties
of the PKI’s operation is often a multi-year process, owing
in large part to the wide install base and variety of players
involved [1], [2], [8]–[10].

It is often impossible to delegate in the PKI. Any CA
trusted to issue certificates can issue certificates for any
domain. As a result, there are a small number of players with
significant power, making them attractive targets and vectors
for attack [5]–[7], [11].

We argue that certificates must be able to evolve to meet
changing threats, unexpected deployment considerations, and
new capabilities. This paper puts forth a vision that seeks to
achieve this by making certificates more programmable.

II. ASSERTION-CARRYING CERTIFICATES

Taking a step back, we observe that certificates fundamen-
tally encapsulate constraints on what a principal can do. A
certificate constrains the name a principal can claim to be (the

subject name), for how long (the expiration date), what its keys
can be used for (signing, encrypting, etc.), and so on. Thus,
in our view, evolving the certificate ecosystem is a matter of
evolving the constraints they can represent.

We propose incorporating small programs into certificates
themselves that clients run as a part of their validation process.
These programs would be included by the CA who constructs
and issues the certificate. As a straightforward example, one
could imagine replacing today’s expiration (“NotAfter”)
dates with an explicit assertion: now < NotAfter.

Prior proposals required significant redeployment and did
not provide a specific language [3], [4]. We take a language-
centric approach, requiring a modest (we believe) change to
certificates. Our primary goals and approaches are:

Non-goal: Turing completeness is not necessary. Our goal is
not to be able to run any executable from within a certificate.
Rather, we envision adding a set of logical constraints, which
may not even have any side effects.

An im Our design runs Prolog programs inside of an
OS sandbox, to limit its system calls, memory consumption,
and even run-time (latencies are critical during certificate
validation). Compared to other logic-based programming lan-
guages, Prolog has several useful features like namespaces
and negation. However, we acknowledge that Prolog may be
unnecessarily powerful for our setting. We are also exploring
Datalog (a strict subset of Prolog), which may make it more
amenable to static analysis.

Goal 1: Do not broaden the attack surface. This effort is
for naught if we ultimately make clients or websites more
vulnerable. It is therefore important that our constraint-based
language permit formal analysis, be easily testable, and be
concise and readable enough to mitigate user error.

Prolog lends itself well to this property because it is incred-
ibly concise. For instance, we re-implemented the certificate
validation code from mbed TLS in 82 lines of Prolog.

Goal 2: Never relax constraints. Certificates form a chain:
the root signs an intermediate certificate (which can in turn
sign more intermediates), which ultimately signs the leaf
certificate (typically that of a website—which cannot sign any
certificates). We envision each of these being able to carry
their own code; the chain validates if the union of the logical
constraints return true. It is imperative that that certificates
further down the chain not be allowed to overrule those above
them: for instance, constraints set by the root should not be
able to be relaxed by any other certificate in the chain.



ACCs achieve this by enforcing that each certificate’s code
is in its own immutable namespace: certificates can call into
others’ code, and add new constraints in their own namespaces,
but they cannot remove constraints from others’.

Example: Naming constraints. Thus far, we have imple-
mented several new features that have long been debated
(but not deployed) by the PKI ecosystem, including naming
constraints (the assertion that “all certificates farther down the
chain must end in the name .example.com”), which took
5 lines of Prolog. Name-constrained certificates allow a CA
to delegate some of its signing power to others.

ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments. This
work was supported in part by NSF CNS grants 1900879,
1900996, 1901047, 1901090, and 1901325, and a grant from
the Alfred P. Sloan Foundation.

REFERENCES

[1] Abusing bleeding edge web standards for appsec glory, 2016.
https://www.dropbox.com/s/63zlhsuhwtwfd12/us-16-Zadegan-Abusing-
Bleeding-Edge-Web-Standards-For-AppSec-Glory.pdf?dl=1.

[2] Alexa top 1 million analysis - august 2017, 2017.
https://scotthelme.co.uk/alexa-top-1-million-analysis-aug-2017/.

[3] John DeTreville. Making Certificates Programmable. In First Annual
PKI Workshop, 2002.

[4] Cynthia Dwork and Christina Ilvento. SmartCert: Re-
designing Digital Certificates with Smart Contracts, 2020.
https://arxiv.org/pdf/2003.13259.pdf.

[5] Dennis Fisher. Final Report on DigiNotar Hack Shows Total Compro-
mise of CA Servers. https://threatpost.com/final-report-diginotar-hack-
shows-total-compromise-ca-servers-103112/77170/.

[6] French gov used fake google certificate to read its workers’ traffic.
https://www.theregister.co.uk/2013/12/10/
french gov dodgy ssl cert reprimand/.

[7] Google warns of fake digital certificates issued for its domains and
potentially others. https://venturebeat.com/2015/03/23/google-security-
temporarily-compromised-by-fake-digital-certificates/.

[8] Intent to deprecate and remove: Public key pinning.
https://groups.google.com/a/chromium.org/forum/!topic/blink-
dev/he9tr7p3rZ8.

[9] C. Jackson J. Hodges and A. Barth. http strict transport security (hsts).
[10] Michael Kranch and Joseph Bonneau. Upgrading https in mid-air: An

empirical study of strict transport security and key pinning. In Proc of
NDSS, 2015.

[11] Misissued/Suspicious Symantec Certificates.
https://groups.google.com/forum/!msg/
mozilla.dev.security.policy/fyJ3EK2YOP8/yvjS5leYCAAJ.

APPENDIX

In this appendix, we provide an example snippet of code:
our implementation of naming constraints. In standard Prolog
formatting, this would be four assertions over five lines of
code; we have reformatted it for additional readability here.

1 /* Does String end with Suffix */
2 endsWith(String, Suffix) :-
3 string_concat(_, Suffix, String).
4

5 /* Is certificate Y a descendant of X */
6 descendant(X,Y) :-
7 signs(X,Y);
8 signs(X,Z), descendant(Z,Y).
9

10 /* Does the certificate’s name end in Suffix */
11 nameConstrained(Cert, Suffix) :-
12 hasName(Cert,Name), endsWith(Name, Suffix).
13

14 /* Each descendant X of cert is name-constrained */
15 forall(descendant(cert,X),
16 nameConstrained(X, ".example.com")).

Listing 1. ACCs Prolog-based implementation of naming-constraints. Recall
that, in Prolog, semicolons denote “or” and commas denote “and”.


