
Maygh: Building a CDN from client web browsers

Liang Zhang Fangfei Zhou Alan Mislove Ravi Sundaram

Northeastern University

{liang,youyou,amislove,koods}@ccs.neu.edu

Abstract

Over the past two decades, the web has provided dramatic
improvements in the ease of sharing content. Unfortunately,
the costs of distributing this content are largely incurred by
web site operators; popular web sites are required to make
substantial monetary investments in serving infrastructure
or cloud computing resources—or must pay other organi-
zations (e.g., content distribution networks)—to help serve
content. Previous approaches to offloading some of the dis-
tribution costs onto end users have relied on client-side soft-
ware or web browser plug-ins, providing poor user incen-
tives and dramatically limiting their scope in practice.

In this paper, we present Maygh, a system that builds
a content distribution network from client web browsers,
without the need for additional plug-ins or client-side soft-
ware. The result is an organically scalable system that dis-
tributes the cost of serving web content across the users
of a web site. Through simulations based on real-world ac-
cess logs from Etsy (a large e-commerce web site that is the
50th most popular web site in the U.S.), microbenchmarks,
and a small-scale deployment, we demonstrate that Maygh
provides substantial savings to site operators, imposes only
modest costs on clients, and can be deployed on the web
sites and browsers of today. In fact, if Maygh was deployed
to Etsy, it would reduce network bandwidth due to static con-
tent by 75% and require only a single coordinating server.

Categories and Subject Descriptors C.2.4 [Performance

of Systems]: Distributed Systems—Distributed applications;
C.2.0 [Computer-Communication Networks]: Network Ar-
chitecture and Design—Distributed networks

General Terms Algorithms, Design, Performance, Secu-
rity

Keywords Content distribution network, distributed,
JavaScript

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

1. Introduction

Over the past two decades, the web has enabled content
sharing at massive scale. Unfortunately, the architecture of
the web places substantial monetary burden on the web site
operator, who is required to supply the resources (serving
infrastructure and network bandwidth) necessary to serve
content to each requesting client. Spreading the distribution
costs among the users—the idea that underlies the success
of peer-to-peer systems such as BitTorrent [9]—is difficult
over the web, as the web was designed with a fundamentally
client–server architecture. This situation exists despite the
fact that significant amounts of web content are now gen-
erated by end users at the edge of the network, fueled by
the popularity of online social networks, web-based video
sites, and the ease of content creation via digital cameras and
smartphones. Web site operators who wish to serve a large
number of users are forced to make substantial investments
in serving infrastructure or cloud computing resources, or
pay content distribution networks (CDNs) such as Akamai
or Limelight, to serve content.

Recent approaches have worked towards overcoming
these limitations, aiming to allow end users to help the
web site operator distribute the static objects (e.g., im-
ages, videos, SWF) that make up web pages. Examples in-
clude Akamai’s NetSession [1, 4], Firecoral [50], Flower-
CDN [13], BuddyWeb [55], and Web2Peer [39]. All of these
systems are built either using browser plug-ins that the user
must install, or client-side software that the user must down-
load and run. As a result, the set of users who can take advan-
tage of these systems is limited to those that download the
software or plug-ins; clients have little incentive to install the
plug-in or software, and clients without it are served using
existing techniques. With the most popular [32] of all Fire-
Fox plug-ins (Adblock Plus) being installed by only 4.2%1

of FireFox users, such techniques are still likely to provide
only modest gains in practice.2

1 AdBlock Plus reports approximately 15 million active users [3], out of
approximately 350 million Firefox users [33].
2 It is worth noting that Akamai’s NetSession reportedly has over 24 million
users [1] (the NetSession software is typically bundled with video stream-
ing software). However, because these users run Akamai’s software, web
operators must still pay Akamai to use these clients to serve content.

In this paper, we build and evaluate Maygh,3 a system
that automatically builds a CDN from visiting users’ un-
modified web browsers. With Maygh, users visiting the op-
erator’s web site automatically assist in serving static con-
tent to others for the duration of their visit; once they leave
the site, this assistance ceases. Maygh requires no client-side
changes and only minor modifications to the operator’s site,
and can be deployed on the web sites and web browsers of
today. One might expect that peer-assisted content distribu-
tion would not work well when implemented only using web
technologies, as such an implementation necessarily results
in short average session times, small cache sizes, high churn,
a limited computation model, and limited network stack ac-
cess. We demonstrate that even in this challenging environ-
ment, a useful browser-assisted CDN can be constructed and
deployed today, allowing operators who wish to distribute
significant amounts of static content to spread the costs of
distribution across their users.

Maygh enables web browsers to assist in content distri-
bution using two techniques. First, Maygh uses the storage
APIs [56, 59] supported by modern browsers to persistently
store content on end user machines. Second, Maygh uses
newly-available browser-to-browser communication tech-
niques [40, 57] to enable direct message exchange with other
browsers. Maygh uses centralized coordinators to track the
static content stored in browsers, serving as a directory for
finding content.

We evaluate Maygh using five approaches. First, we
demonstrate the potential for Maygh by surveying the frac-
tion of web traffic that is static content; we find that despite
large amounts of dynamically generated content, static ele-
ments like images, videos, and SWF (Flash objects) still rep-
resent a significant fraction of web bytes and could be served
via Maygh. Second, using microbenchmarks, we show that
the client-side performance of Maygh is acceptable, and that
Maygh incurs little network and storage overhead. Third,
we show that the central coordinators necessary to support
Maygh can be scaled to support many thousands of con-
tent requests per second, easily handling the traffic that large
web sites receive. Fourth, we demonstrate that Maygh can
dramatically reduce the network traffic at web site opera-
tors by simulating a Maygh deployment at scale using real-
world Akamai image access traces from Etsy [14] (a large
e-commerce site that is currently the 50th most popular web
site in the U.S. [5]). Our results show that Maygh would re-
duce the 95th-percentile bandwidth required to distribute im-
age content by 75% while only requiring one four-core co-
ordinator machine. Fifth, through a prototype deployment of
Maygh within our department, we demonstrate that Maygh
can be easily integrated into existing web sites and is practi-
cal on the web browsers and web sites of today.

The remainder of this paper is organized as follows: Sec-
tion 2 explores the potential of Maygh by examining the

3 “Maygh” is a rough phonetic translation of a Hindi word for “cloud.”

Content Type % Requests % Bytes % Cacheable

Image 70.5 40.3 85.7

JavaScript 13.1 29.0 84.8

HTML 10.7 19.9 30.1

CSS 3.5 8.7 86.5

Flash 0.9 1.3 96.0

Other 1.3 1.0 45.7

Overall 100 100 74.2

Table 1. Breakdown of browsing trace from the top 100
Alexa web sites. Cacheable refers to the fraction of bytes
that are cacheable according to the HTTP headers.

fraction of static content on sites today. Section 3 details
the design of Maygh, and Section 4 discusses the secu-
rity/privacy implications. Section 5 evaluates Maygh, Sec-
tion 6 details related work, and Section 7 concludes.

2. Maygh potential

We begin by examining the potential for a system like
Maygh that is able to assist in the delivery of static content.
Over the past few years, dynamically generated web pages
have become more prevalent. For example, advertisements
are often targeted, online social networking sites customize
pages for each user, and news web sites often provide sug-
gested articles based on each user’s browsing profile. While
most of these dynamically generated pages cannot be served
by end users, a significant faction of resources embedded
in the page (such as images, videos, and SWF) represent
cacheable static objects. We now conduct a brief experiment
to measure the fraction of bytes that such static content typ-
ically represents, suggesting the potential for Maygh to help
distribute static content.

We conduct a small web browsing experiment. We first
select the top 100 websites from Alexa’s [6] ranking (col-
lectively, these sites account for 37.3% of all web page
views [6]). For each of these sites, we use a web browser
under automated control to simulate a browsing user, and
we record all of the HTTP requests and responses. Starting
with the root page of the site, the browser randomly selects a
link on the page that stays on the same domain. The browser
repeats this step five times, effectively simulating a random
walk on the site of length five. To avoid any effects of person-
alization, we remove all browser cookies between requests.
Finally, we repeat the experiment five times with different
random seeds.

The result is shown at Table 1, aggregated across all
sites by content type. We observe that 74.2% of the bytes
requested are marked as cacheable based on the Cache-
Control HTTP header.4 This result, while by no means ex-
haustive, is in-line with other studies [23, 24] and suggests
that reducing the bandwidth required to distribute static con-

4 We only consider content that contains no Cache-Control header or is
marked Cache-Control: public, as recommended by RFC 2616 [16].

tent is likely to provide significant savings to web site oper-
ators in practice.

3. Maygh design

We now describe the design of Maygh. At a high level,
Maygh provides an alternate approach to building a CDN
for distributing static web content like images, videos, and
SWF objects. Maygh relieves some of the load of serving
content from the web site operator (hereafter referred to
simply as the operator). Maygh works by allowing the client
web browsers visiting the operator’s site to distribute the
static content to other browsers. Maygh is compatible with
dynamic web sites, as it can be used to load the static content
objects that dynamic sites use to build their pages.

Maygh consists of two components: a centralized set of
coordinators, run by the operator, and the Maygh client code,
implemented in JavaScript that is executed in each client’s
web browser.

3.1 Web browser building blocks

In the design of Maygh, we use a number of technologies
now present in web browsers. We assume that users have a
web browser that supports JavaScript, and that users have
JavaScript enabled (recent studies show that these assump-
tions hold the vast majority of web users [61]).

3.1.1 Persistent storage

To store content, the client-side Maygh JavaScript uses the
storage APIs [56, 59] supported by modern browsers. In
brief, these APIs allows a web site to store persistent data
on the user’s disk. The interfaces are similar to cookie stor-
age, in that they present a key/value interface and are per-
sistent across sessions, but are larger in size and can be pro-
grammatically accessed via JavaScript. When a user fetches
content in Maygh, the JavaScript places this content into the
browser’s storage, treating the storage as a least-recently-
used cache.

3.1.2 Direct browser–browser communication

Maygh is designed to use either of two existing protocols
that allow two web browsers to establish a direct connection
between each other. These two protocols, described below,
are largely similar and are intended to allow video and audio
to be exchanged in a peer-to-peer (p2p) fashion between
web browsers. They also allow application-level messages
to be sent; it is this messaging facility that Maygh leverages
to communicate between clients. Both protocols are built
using UDP and support network address translation (NAT)
traversal using STUN5 with assistance from the server.

Both protocols are built around a protocol server that as-
sists in setting up direct connections between browsers. Each

5 In brief, Session Traversal Utilities for NAT (STUN) [38] enables two
machines, each behind NATs, to establish a direct communication channel
over UDP.

web browser selects a unique peer-id that other browsers can
connect to with the assistance of the protocol server (the pro-
tocol itself handles the mapping from peer-id to IP address).
In Maygh, the coordinator is implemented to also serve as a
protocol server.

RTMFP (Real Time Media Flow Protocol [40]) is a closed-
source protocol that is built into the ubiquitous Flash plug-
in.6 RTMFP enables direct communication between Flash
instances. All RTMFP packets are encrypted (each client
generates a key pair), and RTMFP implements flow control
and reliable delivery.

WebRTC (Web Real-Time Communications [57]) is an
open-source standard that is beginning to see adoption in
popular web browsers.7 WebRTC uses Interactive Connec-
tivity Establishment [37] for communicating with the proto-
col server and setting up peer-to-peer communication chan-
nels. WebRTC can be accessed using a browser-provided
JavaScript library.

3.2 Model, interaction, and protocol

We assume that the content that Maygh serves is always
available from the operator as normal, in case Maygh is un-
able to serve the content. We also assume that all content to
be distributed by Maygh is named by its content-hash;8 since
we are focusing on static content, this can be accomplished
in an automated fashion by the operator before publishing
content.

To use Maygh, the operator runs one or more coordina-
tors and includes the Maygh client code (a JavaScript li-
brary) in its pages. The client code automatically connects
the client to a coordinator and enables the client to fetch con-
tent from other clients later. Thus, the use of Maygh is trans-
parent to users, who only observe web pages being loaded as
usual. Users only participate in Maygh on a given web site
as long as the user has a browser tab open to the site; once
the user closes the browser tab, the participation ceases. Be-
cause the coordinator is run by the web site operator, the
operator still receives a record of all content views and can
use this information—as they do today—to target advertise-
ments and make content recommendations.

3.2.1 Client-to-coordinator protocol

The Maygh client code communicates with the coordinator
over either RTMFP or WebRTC.

Initial connection After the web page is loaded, the
client initiates a connection with the coordinator. Once the
RTMFP/WebRTC handshake is complete, the client informs

6 Adobe claims [19] that the Flash player is installed on over 99% of
desktop web browsers. RTMFP has been included in Flash since version
10.0 (released in 2008).
7 WebRTC is available starting in Google Chrome 23 and Firefox 18.
8 We avoid the worry of hash conflicts by using a hash function with a
sufficiently large output space (e.g., SHA-256).

Maygh
Client

JS

Coordinator

Maygh
Client

JS

2 Request peer storing X

3 STUN

4 Transfer of X
Web Site

1 Request X

JS

Web Site

Figure 1. Overview of how content is delivered in Maygh,
implemented in JavaScript (JS). A client requesting content
is connected to another client storing the content with the co-
ordinator’s help. The content is transferred directly between
clients.

the coordinator of the content that it is storing locally by
sending a Maygh update message. This message contains
a list of content-hashes. The client and the coordinator then
keep the connection open via keep-alives.

Content request When a client wishes to fetch content, it
sends a lookup message to the coordinator containing the
content-hash of the content requested and the peer-ids of
any other clients the client is currently connected to. The co-
ordinator responds with a lookup-response message, con-
taining a peer-id that is online and is currently storing that
piece of content.9 If there are many other clients storing the
requested content, the coordinator attempts to select other
clients that the requesting client is already connected to, or
that are close to the requesting client (e.g., by using a geo-IP
database).

Connect to another client When a client wishes to actually
fetch content from another client, it requests a connection
to the specified peer-id. The functionality of establishing the
direct connection is handled by RTMFP or WebRTC with
the coordinator functioning as a protocol server, and the
client is informed when the direct client-to-client connection
is available for use. In brief, if either of the clients is not
behind a NAT, the connection can be made directly without
coordinator assistance. If not, the connection is established
using STUN, with the coordinator assisting.

New content stored When a client has a new object stored
locally, it informs the coordinator by sending another up-
date message. This message contains the content-hashes of
any new objects stored, along with the content-hashes of any
objects that are no longer stored.

3.2.2 Client-to-client protocol

The protocol between clients also happens over either
RTMFP or WebRTC. Once a direct connection is established
using one of these protocols, the client requesting the con-
nection sends a fetch message containing the content-hash

9 Clients are only able to communicate with others that support the same
protocol (RTMFP or WebRTC); the coordinator ensures that only such
clients are returned in the lookup-response.

Coordinator

pid1 (IP ip1) pid2 (IP ip2)

ti
m

e lookup(obj1-hash)

lookup-
respons

e(pid2)

connect(pid2)

RTMFP/WebRTC STUN(ip1)RTMFP/W
ebRTC S

TUN(ip2
)

fetch(obj1-hash)

fetch-response(o
bj1)

update(obj1-hash)

RTMFP/WebRTC Handshake

Figure 2. Maygh messages sent when fetching an object
in Maygh between two clients (peer-ids pid1 and pid2).
pid1 requests a peer storing content-hash obj-hash1, and is
given pid2. The two clients then connect directly (with the
coordinator’s assistance, using STUN if needed) to transfer
the object.

that it wishes to download. The other client responds with a
fetch-response message containing the corresponding con-
tent. A timeline of the messages exchanged in Maygh is
shown in Figure 2.

3.3 Maygh client

The client-side code that implements Maygh is written in
JavaScript. This code manages content and makes Maygh
easy to integrate into an existing web site. With RMTFP,
the Maygh code also has a small Flash object that conducts
all communication (the Flash object itself is hidden, so the
use of Maygh does not alter the layout or appearance of the
operator’s site). To deploy Maygh, the operator includes a
reference to the Maygh JavaScript in their web page, which
causes the Maygh JavaScript (as well as the Flash object, in
the case of RTMFP) to be loaded and run.

The Maygh JavaScript code exports an API that the oper-
ator can use, shown below:

• connect(coordinator) Called when the web page is first
loaded. Causes the Maygh code to connect to the given
coordinator and establish an open session.

• load(content_hash, id) Called when the client code
wishes to load an object. Causes Maygh to request the
address of another client who is currently storing the
given object, and then connect to that client, download
the object, and verify its content-hash. If no peer has the
content, if it cannot connect to the peer, if the content-
hash is incorrect, or if downloading from the peer fails,
the Maygh code loads content from the operator’s web

site as normal. The id refers to the DOM id of the object;
Maygh will display the object once loaded.

In brief, the operator can load static content via Maygh by
slightly modifying its existing pages. For example, if the
operator loads an image using the HTML

it can instead load the image with Maygh using

<script type="text/javascript">
maygh.load("-hash-", "-id-");

</script>

where -hash- is the content-hash of the image. Once loaded,
Maygh will display the image as normal. Similar techniques
can be used to load other static content objects like videos,
SWF objects, and CSS.

The Maygh library is configured to maintain only a sin-
gle connection to each site’s coordinator, even if the user has
multiple browser tabs open to the same site (essentially, each
site maintains a single connection with each browser, regard-
less of the number of tabs open). With WebRTC, this is done
automatically using shared WebWorkers [58]. With RMTFP,
this is accomplished using Flash’s LocalConnection, where
the multiple tabs from a single site can communicate with a
single Flash instance and share a single coordinator connec-
tion.

It is important to note that many of the content-loading
optimizations that are present in the web today are compati-
ble with Maygh. For example, many web sites pre-fetch im-
ages that the user is likely to view next, or fetch images using
AJAX instead of HTML tags. Both of these can be
easily modified to load the content with Maygh, replacing
the existing loading logic with a call to Maygh’s load func-
tion. Additionally, Maygh connects to other clients and can
load objects in parallel, thereby avoiding additional latency
on pages that have many objects loaded with Maygh.

3.4 Maygh coordinator

Maygh uses one or more centralized coordinators run by the
web site operator. The coordinators have two functions: serv-
ing as a directory for finding other clients storing content,
and serving as a protocol server for RTMFP or WebRTC.

Recall that once clients are connected to a coordinator,
they inform the coordinator of any locally stored content
(identified by content-hashes). The coordinator maintains
this data in two data structures: First, the coordinator main-
tains a content location map, which maps each piece of con-
tent (identified by its content-hash) to the list of online peer-
ids storing that content. Second, the coordinator maintains
a client map, which maps each peer-id to the list of content
that it is storing.

Maintaining these two maps allows the coordinator to en-
sure that the content location map contains only references to
clients who are online. Whenever a client goes offline (either

explicitly or through a timeout of the keep-alive messages),
the coordinator determines the list of content that client was
storing using the client map, and then purges that client’s
record from each of the entries in the content location map.

The coordinator also keeps track of the number of content
bytes each client has downloaded and uploaded for a config-
urable time period (e.g., each week). Doing so allows the
coordinator to ensure that no client is asked to upload more
than a configurable fraction upload_ratio of what it has
downloaded. Maygh also provides a global upper bound up-
load_max on the total amount of content that any client is
asked to upload, regardless of how much it has downloaded.
For example, the operator could set upload_ratio to 1 and
upload_max to 10 MB per week, ensuring that no client
has to upload more than the amount it has downloaded, and
never more than 10 MB each week.

3.5 Multiple coordinators

One of our goals is to allow web sites using Maygh to scale
to large numbers of users. In such a deployment, it is likely
that a single coordinator will quickly become a performance
bottleneck. We could trivially allow the operator to run mul-
tiple coordinators in parallel, but clients who are connected
to different coordinators would be unable to fetch content
from each other (as each coordinator would not be aware of
the content stored on clients connected to the other connec-
tors). This has the potential to preclude much of the potential
savings of Maygh from being realized.

Instead, we enable multiple coordinators to work in tan-
dem and allow clients connected to different coordinators to
exchange content. We assume that the operator has deployed
a set of N coordinators in a single location (e.g., the opera-
tor’s datacenter), and has a load balancing algorithm where
the clients are each randomly assigned to one of these N co-
ordinators. We also assume that the coordinators are aware
of each other and maintain open connections to each other.

Recall from above that the single coordinator maintains
two data structures: the client map and the content location
map. We keep the client map exactly the same as before
(each of our N coordinators maintains a client map contain-
ing entries for its clients). However, we distribute the content
location map across all of the coordinators using consistent
hashing [25], effectively forming a one-hop distributed hash
table [20]. Each coordinator selects a random coordinator-
id from the same hash space as the content-hashes (e.g., by
running the same hash function on its IP or MAC address).
Each coordinator is then responsible for storing the content
location map entries for which its coordinator-id is numeri-
cally closest to the content-hash key. Finally, for each peer-id
in the content location map, we also store the coordinator-id
that the peer is connected to. A diagram showing this distri-
bution is shown in Figure 3.

Distributing the state of the coordinator in this manner al-
lows for the multiple coordinators to have favorable scaling
properties. Consider the operations that are necessary when

Coordinator

JS

 Content location map

obj1 {pid1/c1, pid7/c3}
obj2 {pid1/c1, pid2/c2}

pid1 pid4 pid8

c1

Coordinator
JS

 Content location map

obj3 {pid4/c1, pid8/c1}
obj4 {pid2/c2}

pid2 pid6

c2

Coordinator
JS

Content location map

obj5 {pid1/c1}
obj6 {pid7/c3}

c3

pid7

Figure 3. Overview of how multiple coordinators work to-
gether Maygh. The mapping from objects to list of peers
is distributed using consistent hashing, and the coordinator
each peer is attached to is also stored in this list. The max-
imum number of lookups a coordinator must do to satisfy a
request is two: One to determine a peer storing the requested
item, and another to contact the coordinator that peer is at-
tached to.

a client issues a lookup message: The client’s coordinator
receives that message, and can immediately determine the
coordinator who is storing that entry in the content location
map, through the use of consistent hashing. The coordina-
tor requests that entry from the remote coordinator, caches
the result, and then returns the list of peer-ids to the client.
When the client requests to be connected to another client,
the coordinator uses the cached result to determine the co-
ordinator to whom the remote client is connected, and then
communicates with that coordinator to allow the two clients
to directly connect. In fact, the establishment of the direct
client-to-client connection proceeds exactly as in the single-
coordinator case, except that each coordinator only sends
STUN packets to its own client.

As a result, the coordinator is only required to send at
most two messages to other coordinators in response to a
lookup message, regardless of the number of coordinators
that exist. As we demonstrate in the evaluation, this allows
the performance to scale close to linearly with the number
of coordinators, and enables Maygh to be used on sites that
serve many thousands of requests per second.

4. Security, privacy, and impact on users

The design of Maygh changes many of the properties of the
web, raising a number of concerns about security, privacy,
and the impact that Maygh will have on users. We now ad-
dress these questions, leading to a discussion of the deploy-
ments where Maygh is most appropriate.

4.1 Security

We first examine how Maygh handles malicious users. There
are two primary concerns: malicious users might attempt
to serve forged content to other users, or might attempt to
perform denial-of-service (DoS) attacks by overloading the
coordinator or violating the protocol.

In order to detect forged content, all content in Maygh
is self-certifying [47], since it is identified by its content-
hash (see Section 3.2). When a client receives content, the
client immediately compares the hash of the content with its
identifier. This enables the client to immediately detect and
purge forged content; if forged content is detected, the client
then downloads the content from the operator as normal.

In order to address users who attempt to violate the
Maygh protocol (e.g., by claiming to have content stored lo-
cally that they later turn out not to have), Maygh uses similar
techniques that are in-use by such sites today: Operators can
block accounts, IP addresses, or subnets where malicious be-
havior is observed [45]. Additionally, since the coordinator
is under the control of the operator, existing defenses against
DDoS attacks can be deployed to protect the coordinator
similar to the operator’s web servers [27, 31].

4.2 Privacy

Next, we examine the privacy implications of Maygh. We
first note that the Maygh coordinator tracks the content
stored in each user’s browser while the user is online, which
could lead to privacy concerns. However, we note that the
Maygh coordinator is run by the web site operator, who, to-
day, is already able to log access requests and track down-
loaded content.

In Maygh, clients do receive information about views of
content by other users (i.e., when a client sends or receives
a fetch message for a piece of stored content, it can de-
termine the IP address of the other user viewing that con-
tent). As a result, there may be sensitive content for which
Maygh is inappropriate. In such cases, the operator can dis-
able loading such content via Maygh, or allow the user to
do so using privacy controls. Alternatively, the operator can
add background requests to random pieces of content (some-
times referred to as cover traffic [17]), or can place con-
tent on clients before they have viewed it, in order to pro-
vide plausible deniability. Regardless, the privacy implica-
tions of Maygh, where users can sometimes infer informa-
tion on the views of others, are similar to a number of de-
ployed peer-assisted content distribution systems including
Akamai’s NetSession [4] (used by services like the NFL’s
online streaming [30]), Flower-CDN [13], Firecoral [50],
and numerous IPTV systems [21] such as PPLive [43].

Additionally, it is difficult for an attacker to determine the
contents of a specific users’ LocalStorage in Maygh. This
is because, for each lookup request a user issues, the co-
ordinator returns a single remote client that the coordinator
believes is close to the requestor. As a result, the choice of

which client is returned is the coordinator’s, and the coordi-
nator is able to apply randomization or other techniques to
limit the ability for the attacker to target specific users. Ac-
counts or IP addresses that issue spurious requests can be
banned or blocked in the same manner as they are on today’s
web sites [45].

In order to ensure the users can only access content they
are authorized to view, the coordinator can authenticate con-
tent requests in the same manner as existing web servers.
If a client issues a lookup request for a content-hash it is
unauthorized to view, the coordinator can simply deny the
request. Moreover, using content-hashes for naming may en-
able Maygh to skip this authentication for many applica-
tions, as users can only request content if they know its hash.
In fact, this is precisely the semantics that many web sites
with sensitive content use today. For example, on Flickr, the
URLs of images are obfuscated through the use of a per-
image “secret” (analogous to our content-hash), but anyone
who possesses the secret can construct the URL and down-
load the image.

4.3 Impact on users

When deployed, Maygh reduces the bandwidth costs im-
posed on the web site operator. Our hope is that lowering
these costs will both reduce the need for operators to rely on
advertising revenue (often enabled by data mining end-user-
provided content), as well as allow web sites to be deployed
that are not currently economically feasible. For example,
sites that deploy Maygh may choose to make Maygh opt-in,
offering to show fewer ads to users who help with content
distribution. Regardless, Maygh’s tracking of the amount of
content uploaded and downloaded ensures that no user has
to contribute more resources than they use, and we demon-
strate in the next section that Maygh imposes an acceptable
bandwidth and storage cost on the clients (since the load is
distributed over all clients).

Most cable or DSL systems offer users asymmetric
bandwidth, with more downstream than upstream band-
width [12]. This configuration is unlikely to significantly af-
fect Maygh, as we demonstrate in Section 5 that each user
ends up serving content infrequently and the content served
is small compared to the available upstream bandwidth. Re-
ducing content page loading latency is typically important
for web site operators, and using Maygh imposes increased
latency on content requests. Moreover, additional latency in
Maygh can be caused by clients with asymmetric bandwidth.
However, operators can hide much of this increased latency
from users by using content pre-fetching techniques (in fact,
many sites already do so).

4.4 Mobile users

The Maygh design so far has focused on users who are us-
ing traditional desktop web browsers. However, users are in-
creasingly accessing the web from mobile devices. As the
mobile web browsers are quickly catching up with their

desktop counterparts, it is likely that Maygh will work with-
out modification once WebRTC support is provided to these
browsers. However, a potential drawback is that the user ses-
sion times are likely to be much shorter, as smartphones
typically only allow users to have one “active” web page at
a time. Moreover, smartphones present two additional con-
straints: Limited battery life and data access charges. Previ-
ous work [60] has shown that mobile browser-based assis-
tance can be implemented without significant battery con-
sumption, and Section 5 demonstrates that per-user limits on
the amount of data users are requested to upload does not
significant impact the benefits of Maygh. However, we leave
a full evaluation of the potential of Maygh on mobile devices
to future work.

5. Evaluation

We now turn to evaluate the performance of Maygh. We
center our evaluation around four questions:

• What is the impact of Maygh on web clients, in terms of
increased latency and network overhead?

• What is the scalability of Maygh? How many content
requests per second can a set of coordinators support?

• What is the impact of Maygh on the operator, in terms
of the reduction in network traffic? How much network
overhead does Maygh incur?

• How does Maygh perform when deployed on a real web
site to real users?

5.1 Implementation

Our full Maygh implementation is written using RMTFP, as
this allows us to deploy Maygh onto a wide variety of web
browsers and to obtain a userbase quickly [19]. Support for
WebRTC is in progress, and a proof-of-concept implemen-
tation is described in Section 5.2.2.

The Maygh coordinator is written as a heavily-modified
version of the open-source ArcusNode [7] RTMFP server.
ArcusNode is written in JavaScript, built on top of the
Node.js [34] framework. As a result, our coordinator con-
sists of 2,944 lines of JavaScript, and 372 lines of C for the
encryption and encoding libraries. Our coordinator supports
working in tandem with other coordinators, as described in
Section 3.5. The code is single-threaded, event-driven, and
uses UNIX pipes for communication (between coordinators
resident on the same machine) or TCP sockets (if not).

The client-side Maygh implementation consists of 657
lines of JavaScript (with a total size of 4.2 KB) and 214
lines of ActionScript (compiled into a 2.6 KB Flash object).
We use the Stanford Javascript Crypto Library’s SHA-256
implementation [49] (6.4 KB) to implement hashing on the
client side. Thus, each client has to download an additional
13.2 KB of code (which is likely to be cached, allowing each
client to only have to download it once).

Loaded Loaded from

to LAN Cable DSL

BOSTON BOSTON NEW ORLEANS

LAN BOSTON 229 / 87 618 / 307 1314 / 707

Cable BOSTON 771 / 283 702 / 314 1600 / 837

Table 2. Average time (ms) to load first / second 50 KB
objects using Maygh with RTMFP.

In some of the experiments below, we wish to simulate
a large number of clients using Maygh. It is challenging to
run thousands of web browsers and Flash runtimes at once;
instead, we wrote a command line-based implementation
of the Maygh client. This implementation, written on the
Node.js [34] framework similar to our coordinator code,
follows the exact same protocol as the Maygh JavaScript and
Flash does when run within a web browser; from a network
perspective, the messages sent are identical. However, the
simulated clients run entirely at the command line.

To implement this client, we reverse-engineered the
client-side RTMFP protocol. We then implemented the client
on the Node.js framework. In total, it contains 2,900 lines of
JavaScript (2,053 of which are shared with the coordinator
implementation).

5.2 Client-side microbenchmarks

We now examine the impact that Maygh would have on
end users. We examine the latency of fetching objects, the
additional network traffic, and the storage requirements.

5.2.1 Client-perceived latency

We first examine the client-perceived latency of fetching
content. For this experiment, we deploy Maygh to a test
web site with a coordinator located on our university’s LAN
in Boston. We connect two clients running Google Chrome
13.0 with Ubuntu 11.04 to the web site and one of the clients
fetches two 50 KB objects from the other. We measure the
time required to fetch each entire object, and all results are
the average of ten separate runs. We report the time taken
from the requesting client’s perspective, including all mes-
saging with the coordinator, connection setup with the other
client, and hash verification. For all experiments, we config-
ure additional command-line clients to create a background
load of 200 fetch requests per second to the coordinator.

As we are interested in the latency experienced by clients
in different locations, we run this experiment with a number
of different configurations. We placed the client requesting
the objects in two different locations: on the same LAN as
the coordinator, and behind a cable modem in Boston. Then,
we placed the client serving the objects in three different
locations: on the same LAN as the coordinator, behind a
cable modem in Boston, and behind a DSL modem in New
Orleans.

Loaded Loaded from

to LAN Cable DSL

BOSTON BOSTON NEW ORLEANS

LAN BOSTON 72 / 16 364 / 120 544 / 354

Cable BOSTON 284 / 57 577 / 107 765 / 379

Table 3. Average time (ms) to load first / second 50 KB
objects using Maygh with our proof-of-concept WebRTC
implementation.

The results of this experiment are presented in Table 2.
We report the average time taken for the first object sepa-
rately from the second object; the first is higher because it
includes connection setup (including STUN, in the cases of
Cable–Cable and Cable–DSL) with the remote client. For
the second object, the connection to the remote client is
cached by the Maygh library. For all intra-Boston connec-
tions, the time taken to deliver the 50 KB object is under
320 ms, with a RTMFP connection setup overhead of ap-
proximately 300 ms. Fetching content from New Orleans to
Boston is more expensive, but we expect that clients will be
able to find another online client within their geographic re-
gion the majority of the time. Additionally, much of this la-
tency can be hidden through the use of content pre-fetching
(which many web sites already do) and parallel downloads
(which most browsers already do).

5.2.2 Latency with WebRTC

Our latency results in the previous section suggest that there
is non-trivial latency overhead when using RTFMP (re-
call that RTFMP is primarily designed for audio and video
streams to be exchanged, not application-level messages). To
determine how much of the latency is due to RTMFP proto-
col overhead—and is therefore not fundamental to Maygh—
we implemented a proof-of-concept version of Maygh using
WebRTC. We use Chromium 26.0.1412.010, which has ini-
tial support for WebRTC’s DataChannel. We repeat the same
experiment as above, and report the results in Table 3. We
observe that all cases, our prototype WebRTC implementa-
tion is significantly faster (typically around twice as fast as
RTMFP). This result indicates that the performance of our
RTMFP-based implementation is likely a lower bound on
the performance of (in-progress) complete WebRTC-based
implementation.

5.2.3 Network traffic

We now turn to examine the network traffic overhead caused
by Maygh. As discussed above, the Maygh code itself is 13.2
KB, although this will be cached by the web browsers for
clients’ subsequent requests. To connect to the coordinator,

10 This build of Chromium imposes a rate limit on each DataChannel of 3
KB/s; we removed this rate limit to perform our experiments. Additionally,
this build only supports unreliable channels; we implemented a reliable
sliding-window-based protocol on top of this interface.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500

A
vg

. R
es

po
ns

e
Ti

m
e

(m
s)

Transactions/second

Figure 4. Average response time versus transaction rate for
a single coordinator. The coordinator can support 454 trans-
actions per second with under 15ms latency.

the client sends a total of 1.3 KB, and the client sends an
additional 0.6 KB for each content request and subsequent
connect request. Thus, even for very small objects, Maygh
imposes very little network traffic overhead. Moreover, the
majority of the overhead comes from the downloading of the
client code and the initial connection to the coordinator; this
cost will be amortized over all objects in the page.

5.2.4 Client storage capacity

Our Maygh implementation uses the LocalStorage [59]
browser storage API, which is by default limited to only 5
MB of storage per site (the other available storage APIs offer
greater defaults; our results are therefore conservative). We
next examine is the number of objects that can be stored in
each user’s LocalStorage. Taking into account the 33% over-
head induced by storing objects in base64 format, Maygh is
able to store 3.3 MB of content per site in each user’s Lo-
calStorage. However, as we demonstrate below using real-
world data from Etsy, even using only 3.3 MB per site on
each client still allows significant savings to be realized.

5.3 Coordinator scalability

We now turn to explore the scalability of the coordina-
tor nodes. Our goal is to determine the rate of content re-
quests (referred to as transactions) that can be supported
by the coordinators. Each transaction consists of a lookup
and lookup-response message and—if the requested con-
tent was found on another online client—a connect mes-
sage followed by the coordinator-assisted connection estab-
lishment between the clients.

For these experiments, we run coordinator node(s) on a
cluster of machines with dual 8-core 2.67 GHz Intel Xeon
E5-2670 processors (with hyperthreading), connected to-
gether by Gigabit Ethernet. We then run simulated clients
on similar machines in the same LAN. We configure each of
the clients to make content requests every five seconds, and
measure the throughput (in terms of the number of trans-
actions per second) across the coordinators. The clients are
configured so that 70% of the transactions will have the con-
tent present on another client.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(b
ef

or
e

re
sp

on
se

 ti
m

e
>

15
m

s)

Number of coordinators

One machine
N machines

Figure 5. Average response time versus request rate for a
multiple coordinators working in tandem, in two different
placements of the coordinators across machines. Close-to-
linear scaling is observed as more coordinator nodes are
added (the one-machine set of coordinators show lower per-
formance after 16 coordinators are placed on a single ma-
chine due to the effects of hyperthreading).

5.3.1 Single coordinator

Our first experiment examines the performance of a single
coordinator process (i.e., a coordinator running only on a
single core). In this experiment, we slowly increase the num-
ber of clients over time and record the number of trans-
actions per second processed by the coordinator. We also
record the request latency at the clients; as the coordinator
reaches peak throughput, we expect the number of transac-
tions per second to level off and the client-observed latency
to increase sharply. The results of this experiment are pre-
sented in Figure 4. After 454 transactions per second, we
observe that the response time increases above 15 ms and
rises more sharply, indicating that the coordinator is having
trouble keeping up.

5.3.2 Multiple coordinators

We now explore the scalability of the coordinators. We re-
peat the experiment from above, but deploy multiple co-
ordinator nodes that work together to distribute content.
The clients are randomly assigned to one of the coordina-
tors and make requests for random content (i.e., there is no
coordinator-locality in the requests).

We run two experiments, distributing the coordinators
in two different ways: all resident on the same physical
machine, and each located on their own machine. In all
cases, we provide each coordinator with a dedicated CPU
core. For each experiment, we slowly increase the number
of clients present and calculate the number of transactions
per second that can be supported before the average response
time at the clients increases beyond 15 ms.

The results of this experiment are shown in Figure 5. We
observe close-to-linear scaling, as expected from our design.
We also observe that the set of coordinators located each on
their own machine show similar performance to the set of co-
ordinators on a single machine, up to 16 coordinators. After
this point, the performance of coordinators on a single ma-

 0
 300
 600
 900

00:00
Fri, Aug 19

00:00
Sat, Aug 20

00:00
Sun, Aug 21

00:00
Mon, Aug 22

00:00
Tue, Aug 23

00:00
Wed, Aug 24

00:00
Thu, Aug 25

M
ay

gh
tr

an
sa

ct
io

ns
/s

Time (EST)

 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (M

b/
s) Normal

10% Plug-in
Maygh

Figure 6. TOP: Bandwidth required at the operator, as normal (with no plug-ins or Maygh), with a 10% plug-in deployment,
and with Maygh; a 10% plug-in deployment results in 7.8% bandwidth savings, while Maygh results in 75% bandwidth savings.
BOTTOM: Request rate observed at the Maygh coordinator; the rate is almost always below 800 requests per second, and is
easily handled by a four-core server.

chine increases more slowly, because coordinator processes
begin to be assigned to the same physical core, though on
different core threads (i.e., the effects of the hyperthreaded
CPUs begin to become apparent).

Overall, we observe that the Maygh coordinators show
very favorable close-to-linear scalability. With our 32-core
server, the Maygh coordinators are able to support over
3,700 transactions per second, making it suitable for very
large websites. In fact, in our simulations below using the
access logs from Etsy, we observe a peak rate of 938 trans-
actions per second; this load would require only a 4-core
machine to host the coordinators.

5.4 Trace-based simulation

Our next evaluation concerns the benefits that Maygh can be
expected to provide in practice to the web site operator.

5.4.1 Simulation data

Determining the benefits of Maygh in practice requires a real
web access trace, as it is dependent upon the object request
pattern, the object sizes, and the offline/online behavior pat-
tern of clients. We use traces provided by Etsy, a large e-
commerce web site that is the 50th most popular web site in
the U.S. [5]. Etsy is a popular online marketplace for inde-
pendent artists and designers; each seller is given an online
“store” where they can post items available for sale. Each
item listing typically contain of a number of images, and
Etsy currently distributes these using Akamai.

We obtained anonymized logs for seven days of accesses
to the static image content on the etsy.com website, cov-
ering 205,586,135 requests to 56,084 unique objects from
5,720,737 unique IP addresses. The logs only include the
busiest 18 hours of the day, from 6:00am–11:59pm EST. In
total, the requests represent 2.77 TB of network traffic, or
395 GB per day. To estimate the overall fraction of Etsy’s
bandwidth that is represented in our traces, we use the same
random browsing methodology from Section 2 on Etsy’s

site. We find that image content represents 85.6% of the to-
tal bytes served by Etsy, meaning any savings we report is
likely to represent significant overall bandwidth savings.

It is important to note that our logs are what the web site
operator sees, after the browser caching and any in-network
(HTTP proxy) caching. Thus, any bandwidth savings that we
report are ones that would be observed in practice.

5.4.2 Simulation setup

Simulating a Maygh deployment requires knowing how long
the clients’ browser windows remain on the site (as this
determines how long the client is available to serve requests
to other users). The trace lists only HTTP requests, so we do
not know the length of time that the client’s browser window
remains open to the site. Therefore, we simulate the clients
staying on the site for a random amount of time between 10
seconds and 30 seconds after each request. This short online
window is likely to be conservative [28] for a storefront
like Etsy; the longer that users stay online, the better the
network traffic savings that Maygh can provide (since users
are available to serve requests for longer).

We simulate the clients’ LocalStorage staying intact be-
tween sessions, as this would happen in practice. Unless
otherwise mentioned, we set upload_ratio to 1 and up-
load_max to 10 MB. This means that no client is asked to
upload more bytes than they have previously downloaded,
and no client is asked to upload a total of more than 10 MB
during the simulated week. In our bandwidth calculations,
we also include the network traffic for clients to download
the Maygh code, to connect to the coordinator, and to exe-
cute the Maygh protocol.

To compare Maygh to alternate approaches, we also sim-
ulate a deployment of a plug-in-based system (e.g., Fireco-
ral [50]) to a random 10% of the Etsy users (recall from Sec-
tion 1 that 10% is likely to be a higher fraction than would
be observed in practice, as the most popular plug-in today is
used by 4.2% of users). Due to the plug-in architecture, users

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120

C
D

F

Five-Minute Average Bandwidth (Mb/s)

Normal
10% Plug-in

Maygh

Figure 7. Cumulative distribution of five-minute average
bandwidth required at the operator for the same trace as
Figure 6.

who install the plug-in would only be able to download from
other such users; users who do not install it would continue
to fetch content from the operator as normal. We simulate the
plug-in system with a per-user 100 MB cache size, and allow
users to serve to others regardless of the amount of data they
have downloaded (i.e., we do not limit users to uploading
only as much as they have downloaded).

5.4.3 Bandwidth savings

We examine the amount of network traffic at the operator un-
der three configurations: normal (with no plug-in or Maygh),
with 10% of users running installing the plug-in, and with
Maygh. We record the network traffic experienced at the op-
erator, aggregated into five-minute intervals over the course
of the week-long trace.

The results of this experiment are presented in the top
graph of Figure 6, showing the five-minute average band-
width required at the operator with different configurations.
Figure 7 presents the cumulative distribution of this same
trace. We make a number of interesting observations: First,
we observe that Maygh provides substantial savings: the me-
dian bandwidth used drops from 50.3 Mb/s to 11.7 Mb/s (a
77% drop). Second, we also observe that the 95th-percentile
bandwidth—which often determines the price that opera-
tors pay for connectivity—shows a similar decrease of 75%,
demonstrating that Maygh is likely to provide a significant
cost savings to the operator. Third, we observe that the 10%
plug-in deployment results in a median bandwidth decrease
of 6.9% and a 95th-percentile bandwidth decrease of 7.7%;
the savings is less than 10% due to cache misses and proto-
col overhead.

In the lower plot of Figure 6, we show the number of
transactions per second that is experienced at the Maygh co-
ordinator over the week. We observe that the average trans-
action rate is 482 transactions per second, with a maximum
of 938. This shows that Maygh could be deployed at Etsy
with a small number of coordinators.

5.4.4 Bandwidth breakdown

We now turn to examine the breakdown of the network traffic
at the operator. In order to explore the contribution that

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

N
et

w
or

k
Tr

af
fic

 a
t O

pe
ra

to
r

(r
el

at
iv

e
to

 n
o

M
ay

gh
)

Minimum Image Size for Maygh (KB)

Served Normally; Maygh Miss

Maygh Overhead

Served Normally; Too Small

Figure 8. Network traffic at the operator, relative to the
trace without Maygh, for different minimum Maygh image
sizes. The traffic consists of three components: images that
are served normally because they are too small, images that
are served normally because Maygh cannot find an online
client able to serve it, and overhead caused by Maygh (down-
loading the client code and protocol overhead). If Maygh
serves all images, the operator would experience 75% less
traffic due to images.

images of different sizes have on the performance of Maygh,
we configure Maygh to only serve images larger than a given
threshold. We then vary this setting, examining the resulting
performance tradeoff. In this setup, the network traffic at the
operator can be broken down into three classes:

1. Maygh overhead consisting of downloading the client
code and Maygh protocol overhead.

2. Content served normally due to Maygh misses when
the coordinator could find no online client able to serve a
request.

3. Content served normally because it is too small when
content is smaller than the Maygh threshold configured
by the web site operator.

The results of these experiments are presented in Fig-
ure 8, for different settings of the minimum image size
that Maygh will serve. The results are presented as stacked
curves and are expressed in terms of the total network traf-
fic that Etsy experienced without Maygh. As an example, if
Etsy chose to configure Maygh to only serve content larger
than 5 KB, they would experience only 27% of the net-
work traffic that they did in the original trace. Of this traf-
fic, 19% would be comprised of images below 5 KB that are
served normally, 62% would be comprised of images larger
than 5 KB that Maygh cannot find an online client to serve,
and 19% would be comprised of Maygh overhead (primarily
downloading the Maygh code).

We observe that Etsy’s workload consists primarily of
small images; over half of the network traffic without Maygh
is spent transmitting images smaller than 35 KB. As a result,
the largest benefits of Maygh in our simulations only happen
when the size threshold for being served Maygh is small.
However, we note that this is an artifact of Etsy’s workload;

1 KB

10 KB

100 KB

1 MB

10 MB

1 KB 10 KB 100 KB 1 MB 10 MB 100 MB

A
m

ou
nt

 o
f D

at
a

U
pl

oa
de

d

Amount of Data Downloaded

Figure 9. Network traffic at the clients, comparing amount
of data uploaded to downloaded. We observe that the client
workload distribution of Maygh is “fair”, meaning most
clients are requested to upload an amount of data that is
proportional to the amount they download.

Maygh has lower overhead with larger objects, so a work-
load with a larger objects is likely to perform even better.

Finally, we observe that, for small thresholds, the largest
fraction of the network traffic at the operator is caused by
Maygh misses. Examining the logs, we find that these misses
are usually caused by the enforcement of the upload con-
straints at the clients. In other words, there are often clients
online who can serve a given piece of content, but all of the
clients have already reached their upload limit. Re-running
the same experiment from above and removing the upload
constraints at the client (meaning clients may be asked to
serve more content than they download) causes the network
traffic due to images at the operator to fall to 18% of the traf-
fic that would be experienced without Maygh (compared to
25% with the upload constraints).

5.4.5 Client network traffic

We now examine is the network traffic that is imposed on
clients. For each client in the trace, we record the total
amount of data downloaded and the total amount of data
that the client is requested to upload. We then compare the
two, to examine how “fair” the distribution of the upload
workload is across clients. For this experiment, we configure
the Maygh threshold to be 5 KB.

Figure 9 presents the results of this experiment, plotting
the total amount of data uploaded vs. downloaded. We ob-
serve that the shape of the plot is largely defined by Maygh
policy: no user is ever asked to upload more than they have
downloaded, and no user is asked to upload more than 10
MB. However, even with those constraints, the workload dis-
tribution across users is quite “fair”: Most users are asked to
upload in close proportion to what they have downloaded.

5.5 Small-scale deployment

As a final point of evaluation, we deployed our Maygh pro-
totype on a small scale within our computer science depart-
ment to examine how it would work with real-world users.11

11 Our real-world deployment was covered under Northeastern University
Institutional Review Board protocol #10-07-23.

We set up a coordinator within our department, deployed
Maygh to a special version of our department’s web server,
and then recruited users by emailing our graduate student
population. The deployment ensured that all images on our
department’s web site would be loaded via Maygh.

In total, over the course of our 3-day deployment, we ob-
served 18 users use Maygh on Google Chrome, Firefox, and
Safari, on machines running Windows, Linux, and OS X.
These users browsed a total of 374 images. 90 (or 24%) of
these images were served from another Maygh client. For
the remaining 76% of the images, there was no other client
online storing the image; they were fetched from the origin
site as normal. While the network savings of Maygh is lower
than in our simulations, it is due to our deployment environ-
ment: For the simulations, we considered what would hap-
pen if a large, popular web site deployed Maygh; in our real-
world deployment, we had to manually recruit users and the
size of our user population is dramatically smaller. However,
the deployment demonstrates that Maygh is can be feasibly
deployed to today’s web sites and web browsers.

6. Related work

We now describe related work covering CDNs, peer-to-peer
systems, and cooperative web caches.

6.1 Optimizing CDNs

CDNs like Akamai, Limelight, Adero, and Clearway have
emerged as a commonly-used platform for web content de-
livery. CDNs offload work from the original web site by
delivering content to end users, often using a large num-
ber of geographically distributed servers. While much work
on CDN architectures has examined different server se-
lection strategies [2, 41, 53] and content replication algo-
rithms [8, 51], most of it is not directly applicable to Maygh.
CDNs generally assume a relatively stable list of servers un-
der centralized control; in Maygh, each visiting web client is
effectively a server. It may be possible to use content repli-
cation techniques to pre-fetch content onto users’ machines;
however, we leave such techniques to future work.

Alternatives to centralized CDN have been built that
use resources under multiple entities’ control to accom-
plish the same task (e.g., Coral [18], CobWeb [48], and
CoDeeN [36, 54]). These solutions are impressively scalable
and well-used, but they generally rely on resources donated
by governments and universities, and are therefore not self-
sustaining in the long run. In fact, the Coral system quickly
overwhelmed the bandwidth resources available on Planet-
Lab within the first year of deployment [50], and was forced
to enforce fair sharing and reject some download requests.

Other approaches have explored allowing end users to
participate in CDNs, including Akamai’s NetSession [4],
Flower-CDN [13], BuddyWeb [55], Squirrel [22], and
Web2Peer [39] (client-side applications that assist in con-
tent distribution to other clients), as well as Firecoral [50] (a

browser plug-in that serves content to other Firecoral users).
While the goals of these systems are similar to Maygh, all
require the user to download and install a separate applica-
tion or plug-in, significantly limiting their applicability and
userbase in practice. WebCloud [60] allows users’ browsers
to participate in content distribution without requiring any
client-side changes; however, it requires that CDN-server-
like redirector proxies be deployed within each ISP region.

Additionally, recent work [44] has demonstrated that in-
formation flow patterns over social networks (called social

cascades) can be leveraged to improve CDN caching poli-
cies. This work is complementary to ours, and suggests that
Maygh will perform especially well in systems like online
social networks. Finally, other recent work [35] has exam-
ined the benefits of allowing ISPs to assist CDNs in making
content delivery decisions. This approach is also similar in
spirit to Maygh, but focuses on optimizing the server selec-
tion strategies employed by ISPs today.

6.2 Alternate approaches

Maygh can be viewed as approximating p2p content ex-
change through web browsers. Much previous work has fo-
cused on building standalone p2p systems for content stor-
age and exchange [11, 26, 29] or avoiding the impact of flash
crowds [42, 46]. However, unlike Maygh, almost all work on
p2p systems assumes a full networking stack and is incom-
patible with being run inside a browser. Recent work [10]
has moved towards leveraging resources on web clients to
provide better scalability for web-based services, but is pri-
marily focused on the services themselves, rather than con-
tent distribution.

There has been a long history of work that examines
corporative web proxy caches, where proxy caches on the
same side of a bottleneck link corporate to serve each other’s
misses [15, 52]. While these systems have the same net
effect of Maygh (the reduction of load on the operator), their
motivation is usually to lower network usage at the edge of
the network, rather than at the operator. As a result, unlike
Maygh, cooperative caches must be deployed and configured
by network administrators at the edge and are not under
control of the operator.

7. Conclusion

Over the past two decades, the web has provided dramatic
improvements in the ability and ease of sharing content. Un-
fortunately, today, web sites who wish to share popular con-
tent over the web are required to make substantial monetary
investments in serving infrastructure or cloud computing re-
sources, or pay organizations like CDNs to help serve con-
tent. As a result, only well-funded web sites can serve a large
number of users.

We have presented the design of Maygh, a system that
distributes the cost of serving content across the visitors to
a web site. Maygh automatically recruits web visitors to

help serve content to other visitors, thereby substantially
reducing the costs for the web site. A thorough evaluation
of Maygh using real-world traces from a large e-commerce
web site demonstrated that Maygh is able to reduce the 95th-
percentile bandwidth due to image content at the operator by
over 75%, providing a substantial monetary savings, and a
small-scale deployment demonstrated that Maygh imposes
little additional cost on clients and is compatible with the
web browsers and sites of today.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Ka-
terina Argyraki, for their helpful comments. We also thank
Avleen Vig for his assistance with the Etsy traces, David
Blank-Edelman and Rajiv Shridhar for their assistance with
the Northeastern traces, Bimal Viswanath for the use of MPI-
SWS servers, and Michael Mislove for his assistance with
the New Orleans latency experiments. Finally, we thank the
developers of the open source ArcusNode project.

This research was supported by NSF grants IIS-0964465
and CNS-1054233, and an Amazon Web Services in Educa-
tion Grant.

References

[1] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel, B.
Maggs, and B. Wishon. Reliable Client Accounting for P2P-
Infrastructure Hybrids. NSDI, 2012.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R.
Morris. Resilient overlay networks. SOSP, 2001.

[3] Adblock Plus : Statistics for Adblock Plus. http://bit.ly/

10WEytx.
[4] Akamai NetSession. http://www.akamai.com/client.
[5] Alexa - Top Sites in the United States. http://www.alexa.

com/topsites/countries;1/US.
[6] Alexa Top 500 Global Sites. http://www.alexa.com/

topsites.
[7] ArcusNode. https://github.com/OpenRTMFP/

ArcusNode.
[8] S. Buchholz and T. Buchholz. Replica placement in adaptive

content distribution networks. SIGACT, 2004.
[9] BitTorrent. http://www.bittorrent.com.

[10] R. Cheng, W. Scott, A. Krishnamurthy, and T. Anderson.
FreeDOM: a New Baseline for the Web. HotNets, 2012.

[11] L. P. Cox and B. D. Noble. Samsara: Honor Among Thieves
in Peer-to-Peer Storage. SOSP, 2003.

[12] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characterizing Residential Broadband Networks. IMC, 2007.

[13] M. E. Dick, E. Pacitti, and B. Kemme. Flower-CDN: a hybrid
P2P overlay for efficient query processing in CDN. EDBT,
2009.

[14] Etsy. http://www.etsy.com.
[15] L. Fan, P. Cao, and J. Almeida. Summary Cache: A Scalable

Wide-Area Web Cache Sharing Protocol. SIGCOMM, 1998.
[16] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.

Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616, IETF, 1999.

[17] M. J. Freedman and R. Morris. Tarzan: A Peer-to-Peer
Anonymizing Network Layer. CCS, 2002.

[18] M. J. Freedman, E. Freudenthal, and D. Mazières. Democra-
tizing content publication with Coral. NSDI, 2004.

[19] Adobe Flash Player Statistics. http://www.adobe.com/
products/flashplatformruntimes/statistics.html.

[20] A. Gupta, B. Liskov, and R. Rodrigues. One Hop Lookups for
Peer-to-Peer Overlays. HotOS, 2003.

[21] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. A Measure-
ment Study of a Large-Scale P2P IPTV System. IEEE Trans.

Multimedia, 9(8), 2007.
[22] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentral-

ized peer-to-peer web cache. PODC, 2002.
[23] S. Ihm. Understanding and Improving Modern Web Traffic

Caching. Ph.D. Thesis, Princeton University, 2011.
[24] S. Ihm and V. S. Pai. Towards Understanding Modern Web

Traffic. IMC, 2011.
[25] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,

and D. Lewin. Consistent hashing and random trees: Dis-
tributed caching protocol for relieving hot spots on the World
Wide Web. STOC, 1997.

[26] J. Kubiatowicz. OceanStore: an architecture for global-scale
persistent storage. ASPLOS, 2000.

[27] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale:
surviving organized DDoS attacks that mimic flash crowds.
NSDI, 2005.

[28] C. Liu, R. White, and S. Sumais. Understanding Web Brows-
ing Behaviors through Weibull Analysis of Dwell Time. SI-

GIR, 2010.
[29] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M.

Isard. A Cooperative Internet Backup Scheme. USENIX ATC,
2003.

[30] R. Lawler. NFL Pushes HD Video, with Help from
Akamai. 2010. http://gigaom.com/2010/09/22/
nfl-pushes-hd-video-with-help-from-akamai/.

[31] J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and
DDoS defense mechanisms. CCR, 34(2), 2004.

[32] Most Popular Extensions :: Add-ons for Firefox. http://bit.

ly/122o6ge.
[33] Mozilla Metrics Report, Q1 2010. http://mzl.la/aplroe.
[34] Node.js Framework. http://nodejs.org/.
[35] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feld-

mann. Improving Content Delivery Using Provider-aided Dis-
tance Information. IMC, 2010.

[36] K. Park and V. S. Pai. Scale and Performance in the CoBlitz
Large-File Distribution Service. NSDI, 2006.

[37] J. Rosenberg. Interactive Connectivity Establishment (ICE):
A Protocol for Network Address Translator (NAT) Traversal
for Offer/Answer Protocols. RFC 5245, IETF, 2010.

[38] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session
Traversal Utilities for NAT (STUN). RFC 5389 (Proposed
Standard), IETF, 2008.

[39] H. B. Ribeiro, L. C. Lung, A. O. Santin, and N. L.
Brisola. Web2Peer: A Peer-to-Peer Infrastructure for Pub-
lishing/Locating/Replicating Web Pages on Internet. ISADS,
2007.

[40] Real-Time Media Flow Protocol (RTMFP) FAQ.
http://www.adobe.com/products/flashmediaserver/
rtmfp_faq/.

[41] A. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante.
Drafting behind Akamai: Inferring network conditions based
on CDN redirections. ToN, 2009.

[42] A. Stavrou, D. Rubenstein, and S. Sahu. A Lightweight,
Robust P2P System to Handle Flash Crowds. ICNP, 2002.

[43] S. Spoto, R. Gaeta, M. Grangetto, and M. Sereno. Analysis
of PPLive through active and passive measurements. IPDPS,
2009.

[44] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. Track
Globally, Deliver Locally: Improving Content Delivery Net-
works by Tracking Geographic Social Cascades. WWW, 2011.

[45] T. Stein, E. Chen, and K. Mangla. Facebook Immune System.
EuroSys, 2011.

[46] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address flash crowds. IPTPS, 2002.

[47] D. K. Smetters and V. Jacobson. Securing network content.
PARC, Technical Report TR-2009-1, 2009.

[48] Y. J. Song, V. Ramasubramanian, and E. G. Sirer. Optimal Re-
source Utilization in Content Distribution Networks. Cornell
University, Technical Report TR2005-2004, 2005.

[49] Stanford Javascript Crypto Library. http://crypto.
stanford.edu/sjcl/.

[50] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Freed-
man. Bringing P2P to the Web: Security and Privacy in the
Firecoral Network. IPTPS, 2009.

[51] C. Vicari, C. Petrioli, and F. L. Presti. Dynamic replica
placement and traffic redirection in content delivery networks.
2007.

[52] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Kar-
lin, and H. M. Levy. On the scale and performance of cooper-
ative Web proxy caching. SOSP, 1999.

[53] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
Lightweight Network Location Service without Virtual Co-
ordinates. SIGCOMM, 2005.

[54] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson. Reli-
ability and Security in the CoDeeN Content Distribution Net-
work. USENIX ATC, 2004.

[55] X. Wang, W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Bud-
dyWeb: A P2P-Based Collaborative Web Caching System.
NETWORKING, 2002.

[56] W3C Indexed Database API. http://www.w3.org/TR/

IndexedDB.
[57] W3C Real-Time Communications Working Group. http:

//www.w3.org/2011/04/webrtc-charter.html.
[58] W3C Web Workers. http://www.w3.org/TR/workers/.
[59] W3C WebStorage. http://www.w3.org/TR/

webstorage/.
[60] F. Zhou, L. Zhang, E. Franco, A. Mislove, R. Revis, and R.

Sundaram. WebCloud: Recruiting social network users to
assist in content distribution. IEEE NCA, 2012.

[61] N. C. Zakas. How many users have JavaScript disabled?
2010. http://developer.yahoo.com/blogs/ydn/posts/
2010/10/how-many-users-have-javascript-disabled/.

