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ABSTRACT
TLS, the de facto standard protocol for securing communications
over the Internet, relies on a hierarchy of certificates that bind
names to public keys. Naturally, ensuring that the communicating
parties are using only valid certificates is a necessary first step in or-
der to benefit from the security of TLS. To this end, most certificates
and clients support OCSP, a protocol for querying a certificate’s
revocation status and confirming that it is still valid. Unfortunately,
however, OCSP has been criticized for its slow performance, unre-
liability, soft-failures, and privacy issues. To address these issues,
the OCSP Must-Staple certificate extension was introduced, which
requires web servers to provide OCSP responses to clients during
the TLS handshake, making revocation checks low-cost for clients.
Whether all of the players in the web’s PKI are ready to support
OCSP Must-Staple, however, remains still an open question.

In this paper, we take a broad look at the web’s PKI and deter-
mine if all components involved—namely, certificate authorities,
web server administrators, and web browsers—are ready to sup-
port OCSP Must-Staple. We find that each component does not yet
fully support OCSP Must-Staple: OCSP responders are still not fully
reliable, and most major web browsers and web server implemen-
tations do not fully support OCSP Must-Staple. On the bright side,
only a few players need to take action to make it possible for web
server administrators to begin relying on certificates with OCSP
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Must-Staple. Thus, we believe a much wider deployment of OCSP
Must-Staple is an realistic and achievable goal.
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1 INTRODUCTION
Authentication—being able to verify with whom one is communi-
cating online—is the foundation of secure communication. TLS, the
authentication and encryption protocol underlying HTTPS, relies
on certificates to bind servers’ (and sometimes clients’) identities to
their public keys. Inevitably, keys are compromised and certificates
are mis-issued, such as through vulnerabilities [10, 40, 41], poor
implementations of cryptography [13, 38], or break-ins to certifi-
cate authorities’ systems [2]. When this happens, it is critical that
certificates be revoked.

Certificate revocation is therefore a critical component of any
Public Key Infrastructure (PKI), and yet recent studies have found
revocation to be woefully inadequate in the web’s PKI. Website ad-
ministrators revoke certificates at paltry rates [40, 41]; no browsers
fully check for revocation information when connecting to TLS
servers [22]; and certificate authorities host Certificate Revoca-
tion Lists (CRLs) that are untenably large [22]. When any one of
these players fails to do their part, the revocation pipeline does not
adequately protect users—unfortunately, today, all of them fail.

Historically, TLS clients have been required to check certificates’
revocation status themselves during the TLS handshake using either
a CRL or via the Online Certificate Status Protocol (OCSP). Not
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only does doing so cause a delay at the client—a client cannot
continue the handshake until it knows that a certificate has not been
revoked—it also potentially exposes the client’s browsing behavior
to the CRL or OCSP server. In an attempt to address some of the
shortcomings of disseminating certificate revocation information,
OCSP Stapling was proposed in RFC 6961 [27]. The idea behind
OCSP Stapling is to have web servers periodically obtain OCSP
responses and piggyback (“staple”) these responses onto certificates
as part of the TLS handshake to the client—thereby mitigating the
privacy and latency costs inherent in CRLs and OCSP.

Unfortunately, OCSP Stapling does not completely solve the prob-
lem of certificate revocation, as clients can choose to continue a
connection if an OCSP response is not provided (and prior work has
shown that all popular web browsers do [22]). To address this chal-
lenge, certificates can include an OCSP Must-Staple extension [14],
which informs the client that it must receive a valid OCSP response
as part of the TLS handshake, or it should reject the certificate.
OCSP Must-Staple is promising, and has the potential to greatly
simplify and speed up the client side of revocation checking.

But, OCSP Must-Staple is not without challenges. For it to work,
all players must do their part:

• Certificate authorities must provide OCSP responders that are
globally and pervasively available, and that return valid and
accurate OCSP responses;

• Clients (browsers) must advertise their support for stapled OCSP
responses during the TLS handshake, and respect the OCSP Must-
Staple extension by rejecting a certificate if it is not provided
with a valid OCSP response;

• Web server softwaremust be updated to support OCSP Stapling
by properly caching OCSP responses and handling errors when
communicating with OCSP responders;

• Web server administrators must support OCSP Stapling and
must periodically request fresh OCSP responses.

In this paper, we study whether today’s web is ready for OCSP
Must-Staple. Specifically, we measure each of the three major
principals—web servers, OCSP responders, and browsers—to ascer-
tain whether they are doing what would be necessary for OCSP
Must-Staple to succeed, and what impact their failures would have
on website availability. Our study extends a preliminary study on
the availability of OCSP servers [32] by measuring over more time,
from more vantage points, and incorporating more of the principals
who comprise the PKI.

Our main findings and contributions are as follows:

• While OCSP Must-Staple became an official RFC in October 2015,
deployment remains low: only 0.02% of all certificates and 0.01%
of certificates from Alexa Top-1M sites use it. However, the cur-
rent most-popular CA, Let’s Encrypt, now supports OCSP Must-
Staple, meaning many domains can request such certificates.

• While examining the availability of OCSP responders, we find a
number of outages during our four months measurement period.
We also find a number of responders that return invalid responses,
responses with superfluous certificates, and responses whose
“close” validity time may cause clients with slightly slow clocks
to consider the response invalid.

• We test all major web browsers and find only one (Firefox) cur-
rently supports OCSP Must-Staple. Unfortunately, the support is
incomplete, as the iOS Firefox app does not yet support it.

• We test two popular web server implementations: Apache and
Nginx. We find that neither fully or correctly supports OCSP
Stapling, meaning clients may fail to be returned a valid OCSP
response even though one may be available.

Overall, our results suggest that if just a few players—namely
large CAs, popular browser vendors, and web server software
maintainers—improved their support for OCSP Must-Staple, it could
be widely deployed by server administrators and improve the over-
all security of the web’s PKI.

The rest of this paper is organized as follows. Section 2 pro-
vides background on certificates, revocation mechanisms, and OCSP
Must-Staple. Section 3 describes related work, and Section 4 pro-
vides a brief look at how widely deployed OCSP Must-Staple is
today. Sections 5, 6, and 7 examine how well certificate authorities,
clients, and servers, respectively, are doing what is necessary to
support OCSP Must-Staple. Section 8 provides a concluding discus-
sion.

Ethical considerations At all times, we took steps to ensure our
measurements met community ethical standards. We responsibly
disclosed our findings to all of the OCSP responders and their CAs
that have service unavailabilities, potential security vulnerabilities
(e.g., outages of OCSP servers, premature thisUpdate values, or
unset nextUpdate values), discrepancies between the CRL and
OCSP responses to help them mitigate the issues.1 We also reported
our findings to the software vendors.

2 BACKGROUND
In this section, we provide a brief background on certificates and
detail the protocols for certificate revocation.

2.1 Certificates
A certificate is a signed attestation that binds a subject to a public
key; in the web, the subjects are domain names. Certificates are
typically issued by certificate authorities (CAs), who in turn have
their own certificates signed by other certificates, terminating at
a small set of self-signed root certificates.2 Thus there is a logical
chain of trust, starting from a root certificate through zero or more
intermediate certificates, to a leaf certificate. To verify a certificate,
a client therefore needs to obtain this chain of certificates and check
that each has a correct signature, has not expired (each certificate
has a well-defined validity period), and has not been revoked.

On the web, the format for a certificate is X.509 [5], which uses
ASN.1 [8] to encode certificate data. X.509 certificates include at
least one common name (the subjects), a public key, a serial number
(unique for each issuer), a validity period, and directions for how
to check if the certificate has been revoked.

1We provided them with CRLs we downloaded, OCSP request,
and OCSP responses for their validation.

2Clients are assumed to obtain these root certificates out-of-
band (e.g., most well-known browsers or operating systems main-
tain a set of root certificates).
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Figure 1: Steps in the process of checking revocation status with different protocols: (a) with CRLs, the client fetches the
(potentially large) CRL after obtaining the certificate in the TLS handshake; (b) with OCSP, the client asks for the revocation
status of only the particular certificate; (c) with OCSP Stapling, the server is supposed to prefetch the OCSP response and
provide it in the handshake, and if it does not, the client can fetch the OCSP response as in (b); and (d) with OCSP Must-Staple,
the server must provide an OCSP response in the handshake or the client will reject the certificate.

2.2 Revocation: CRLs and OCSP
The owner of a certificate can ask its CA to revoke its certificate
for a variety of reasons, such as usage of a cryptographically weak
key [38], erroneous issuance, or key compromise [10, 40]. In such
cases, the CA revokes the certificate by producing a public attes-
tation that the certificate should not be trusted; this attestation
is signed by the CA’s private key. The CA is then responsible for
disseminating such attestations for all revoked certificates that they
have issued. There are two primary protocols by which clients com-
municate with CAs to obtain revocation attestations: Certificate
Revocation Lists (CRLs) [5] and the Online Certificate Status Pro-
tocol (OCSP) [34]. We describe these below, and an overview is
provided in Figure 1.

CRLs are ASN.1-encoded files that contain a list of (serial num-
ber, revocation timestamp, revocation reason) for all revoked cer-
tificates for a CA. CAs include a URL in a certificate as a CRL
Distribution Points extension, so that a client can locate the
CRL. Similar to X.509 certificates, each CRL contains a validity
period (Last Update and Next Update) that specifies the range of
time that it is good for; CAs are responsible for publishing CRLs reg-
ularly to update the validity period even if no additional certificates
have been revoked.3 Once a client has a fresh copy of a certificate’s
CRL, the client can quickly determine whether the certificate is
revoked by checking if the certificate’s serial number appears in the
CRL. CRLs are often criticized, however, due to their inefficiency: a
client needs to download all certificate revocation information even
if it is only interested in the revocation status of a single certificate.
In fact, prior work [22] has demonstrated that CRLs can be up to
76 MB!

OCSP is a web service protocol that allows a client to query the
CA for the revocation status of a single certificate. The CA runs a
server called an OCSP responder that answers such queries. Clients
locate the OCSP responder for a certificate by using a URL that
is provided in the certificate’s Authority Information Access
(AIA) extension. Each OCSP request must contain a given certifi-
cate’s serial number along with a hash of the issuer’s name and

3To reduce the size of CRLs, CAs may remove revoked certifi-
cates from CRLs once they are expired.

public key so that CAs can verify that they issued the certificate
before responding. The OCSP responder returns a signed response
that includes the following information:
• certID: the serial number of the queried certificate,
• thisUpdate and nextUpdate: the range of time for which the

response is valid (i.e., how long it can be cached),
• producedAt: the time at which the OCSP responder generated

this response, and
• certStatus: the certificate’s revocation status, which is one of
– Good: indicating that the certificate is not revoked;4

– Revoked: indicating that the certificate has been revoked, ei-
ther temporarily or permanently, or was never issued by this
CA; or

– Unknown: indicating that the responder does not know about
the certificate being requested, typically because the certificate
is not served by this responder.

OCSP responses are signed, and can be verified using the same
public key that signed the requested certificate. However, OCSP
responses can also contain a leaf certificate (itself signed by the same
CA) that can be used to verify the signature of the OCSP response
instead; this is called OCSP Signature Authority Delegation. Clients
who receive a Revoked OCSP response are supposed to reject the
certificate, while clients who receive an Unknown response are free
to try another source of revocation information (e.g., another OCSP
responder or a CRL) [34].

OCSP reduces the overhead of CRLs by allowing clients to query
the CA for the revocation status for a single certificate. OCSP,
however, has multiple issues; first, because clients depend on the
OCSP response, the OCSP responders need to provide responses
with low latency and high availability; second, one concern about
OCSP is that CAs who run OCSP responders can observe much
of the users’ browsing behavior by monitoring OCSP requests, a
potential privacy risk.

4Good does not necessarily mean that the certificate is within its
validity interval; a client must still check to make sure the certificate
itself is still within its validity period.
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2.3 OCSP Stapling
OCSP Stapling was introduced to address the additional latency
that making OCSP requests engenders. With OCSP Stapling, the
web server obtains an OCSP response ahead of time from the CA,
and then provides this OCSP response to the client during the TLS
handshake. As a result, a client receives both the server’s certificate,
its chain, and a (fresh) OCSP response at the same time, allowing
the client to determine that certificate’s revocation status with
no additional network requests. Moreover, since the client does
not need to connect to the CA’s OCSP responder, OCSP Stapling
alleviates the privacy concerns of OCSP.

Unfortunately, OCSP Stapling does not solve all issues with
OCSP: First, a client needs to check the revocation status of all
certificates on the chain using OCSP, but OCSP Stapling only allows
the revocation status for the leaf certificate to be included. There
is an extension to OCSP Stapling [27] that tries to address this
limitation by allowing the server to include multiple certificate
statuses in a single response, but it has yet to see wide adoption.
Second, and more importantly, most clients (browsers) will accept a
certificate even if they are unable to obtain revocation information
via OCSP or CRLs [22]; this behavior is called “soft-failure” (as
opposed to “hard-failure”, where the client rejects the certificate if
it cannot obtain revocation information [18]). If a client chooses to
soft-fail in this case, an attacker who has control over the client’s
network could block any outgoing OCSP requests (and strip any
stapled OCSP responses), thereby coaxing the client into accept a
revoked certificate.

2.4 OCSP Must-Staple
OCSP Must-Staple aims to solve the problem of soft-failure: it is an
X.509 certificate extension [14] that tells a client to require an OCSP
response be provided (stapled) in the TLS handshake whenever it
sees the certificate. If included in a certificate,5 this extension acts
as an explicit signal to the client that it must hard-fail if the server
does not provide a fresh, valid OCSP response in the handshake.

In order for OCSP Must-Staple to be deployed successfully, the
following entities need to take action:

(1) Certificate authorities must (a) include the OCSP Must-
Staple extension into certificates they issue, with domain
owners’ consent, and (b) run highly available, correct OCSP
responders to provide OCSP responses to web servers; and

(2) Clients (e.g., browsers and TLS libraries) must be updated
to (a) understand the OCSP Must-Staple extension in cer-
tificates, (b) present the Certificate Status Request (CSR)
extension to the web servers during the TLS handshake, and
(c) reject the certificate if they do not receive OCSP responses
from the web server; and

(3) Web server software maintainers must fully and cor-
rectly support OCSP Stapling, properly fetching and caching
OCSP responses as well as handling errors when communi-
cating with OCSP responders.

(4) Web server administrators must configure their servers
to use OCSP Stapling.

5Each extension has its Object Identifier (OID), which of OCSP
Must-Staple is 1.3.6.1.5.5.7.1.24

In the remainder of the paper, we look at each one of these
entities in turn to see how close we are to being able to deploy
OCSP Must-Staple today.

3 RELATEDWORK
In this section, we discuss related studies aimed at understanding
the web’s certificate ecosystem and improving current revocation
mechanisms.

Web certificate ecosystem There is a long thread of studies ex-
amining the web’s certificate ecosystem, based on collections of
certificates gathered from full IPv4 address scans or Certificate
Transparency (CT) logs [11, 37]. Studies have specifically examined
how certificates are managed in practice from the web adminis-
trator side [6, 7] and CA side [15], as well as in response to spe-
cific security vulnerabilities like Heartbleed [10, 40]. Other studies
have measured the deployment of new security features such as
CAA [33], SCSV, and others [3]. Many groups have proposed new
techniques to improve the certificate ecosystem [19, 24, 29].

Our study complements these prior works. We study one of the
most widely used revocation protocols in the certificate ecosystem,
examining how it has been deployed and also discuss the challenges
to improving it.

Challenge of managing revocation There have been a signifi-
cant amount of related work on managing revocation information.
The size of revocations Certificates can be revoked due to a variety
of reasons such as erroneous issuance and key compromises. The
number of revoked certificates has grown (and continues to grow)
significantly, making distributing revocation information to clients
a challenging task. Prior work has attempted to address this issue
by reducing the size of the revocation data or more efficiently dis-
seminating this information. Topalovic et al., for instance, proposed
short-lived certificates to potentially reduce the size of revocation
data [35]; short-lived certificates might be more likely to expire
than be revoked, and clients simply reject expired certificates. Re-
cently, Larish et al. used a filter cascade to compress the revoked
certificate lists [20]. Schulman et al., in contrast, proposed a new
method for disseminating revocation data over FM radio [30].
The latency of revocation checks Maintaining an extensive list of re-
voked certificates imposes a huge burden on both CAs and clients—
i.e., the onus of managing the list on CAs and of downloading such
large lists, frequently, for revocation checks on clients. Although
the OCSP protocol was introduced to alleviate this issue, it intro-
duces additional delay in the TLS handshake for the clients. Several
studies attempted to measure OCSP lookup latency and suggest
improvements [17, 31, 39]. Stark et al. observed that the median
latency for OCSP checks is 291 ms in 2012 [31]. In 2016, Zhu et al.,
however, reported a median latency of 20 ms—a significant improve-
ment due to 94% of the requests being fronted by CDNs, according
to the study [39]. The efforts of CAs and website administrators
are, however, worthless if clients do not perform OCSP lookups
or utilize the lookup response. Liu et al. focused on the revocation
checking behavior of web browsers and operating systems and
showed, for instance, that browsers often do not bother to check
whether certificates are revoked; they showed that mobile browsers
(iOS, Android, and IE) never checked for revocation [22]. Our study
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is complementary: We look at all different components (i.e., CAs,
clients, and web servers) playing a critical role in the OCSP ecosys-
tem to understand its current status and determine what they need
to do for a widespread deployment of OCSP Must-Staple.

4 STATUS OF OCSP MUST-STAPLE
We begin by briefly examining the current deployment status of
OCSP Must-Staple by identifying certificates issued with the OCSP
Must-Staple extension.6 For this section, we obtain our collection
of certificates from Censys [9], which aggregates certificates using
both full IPv4 port 443 scans and public Certificate Transparency
servers [19]. We use the Censys snapshot of this dataset that was
collected on April 24th, 2018, which contains 489,580,002 certificates.
Consistent with prior work [7], we focus only on a set of 112,841,653
valid certificates that were marked as trusted by Censys.7

We first examine the fraction of valid certificates that support
OCSP—a necessary pre-condition for supporting OCSP Must-Staple.
We do so by checking for the existence of at least one OCSP URL in
the certificates’ AIA extension. We find that 107,664,132 certificates
(95.4% of the 112,841,653 valid certificates) support OCSP, confirm-
ing the prevalence of OCSP noted in prior work [22]. When we
examine further to see how many certificates also support OCSP
Must-Staple, however, we discover only 29,709 (0.02%) certificates,
indicating that the deployment of OCSP Must-Staple is still quite
low. From each of these 29,709 certificates, we obtain the issu-
ing CA’s URL from the Certificate Authority Information
Access extension to determine which CAs support OCSP Must-
Staple today. Surprisingly, we find that 28,919 (97.3%) of the certifi-
cates that support OCSP Must-Staple are issued by Let’s Encrypt8
while the remaining are issued by Comodo (73), DFN (716), and
UserTrust (1).

Next, we quickly check whether “popular” domains are more
likely to have deployed OCSP Must-Staple. Figure 2 shows (1) the
percentage of the Alexa Top-1M domains [4] that support HTTPS,
and (2) the percentage of those domains that support OCSP. We
observe that HTTPS support for popular websites is now close
to 75% across the entire range, that OCSP adoption is quite high
(91.3% on average), and that popular domains are (slightly) more
likely to support OCSP. Unfortunately, we find that only 100 cer-
tificates (0.01%) from the Alexa Top-1M domains support OCSP
Must-Staple—OCSP Must-Staple has a long way to go before it is
widely deployed.

In the next section, we explore why OCSP Must-Staple has not
been widely deployed and what needs to be done to encourage its
deployment by CAs, clients, and web server administrators.

6Note that we are not yet examining whether the web servers
actually provide an OCSP response in the TLS handshake; we will
see this later in Section 7.

7To validate the certificates, Censys uses the Apple, Microsoft,
and Mozilla NSS root stores; we consider the certificate if it is valid
using at least one of those three root stores.

8Let’s Encrypt began to support OCSP Must-Staple in May,
2016 [23].
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5 CERTIFICATE AUTHORITIES
CAs are responsible for running highly available, accurate OCSP
responders that can provide OCSP responses to web servers for
use in OCSP Stapling. If these OCSP responders are not reliable,
web servers will be unable to staple OCSP responses during the
TLS handshake—in an OCSP Must-Staple world, clients (browsers)
would refuse to connect to these web servers. Running highly-
reliable OCSP responders is therefore critical to the successful de-
ployment of OCSP Must-Staple. In the remainder of this section, we
evaluate the availability and reliability of OCSP responders before
turning our attention to the “quality” of OCSP responses.

5.1 Methodology
Our goal is to understand how reliable CAs’ OCSP responders are
today. To this end, we collected two data sets, one focusing on a
random sampling of all OCSP responders and the other focusing
only on the OCSP responders for certificates of popular domains.

Complete OCSP responders scans The following steps detail our
methodology for investigating how all OCSP responders behave.

(1) We first extracted all valid certificates from the Censys
dataset (described in Section 4) that had at least 30 days of
validity remaining. This step yielded 77,399,894 certificates.

(2) We grouped the certificates by OCSP responder, which was
retrieved from the certificates’ AIA extension. Each grouping
represents all of the certificates served by a single responder.
For certificates with multiple OCSP responders (6,308 in total
or 0.008%), we choose one responder at random.

(3) We selected 50 random certificates for each OCSP respon-
der, and for OCSP responders associated with less than 50
certificates, we picked all the certificates.

(4) We developed a measurement client that issued OCSP re-
quests using the HTTP POST method for all of the selected
certificates (i.e., we performed an OCSP lookup for each
certificate against its corresponding OCSP responder) every
hour.9

(5) We deployed our measurement client in six different vantage
points around the world—Oregon (Amazon Web Services

9During our measurement period, we excluded certificates from
our measurement results once they had expired.
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Figure 3: Fraction of requests that result in a successful re-
sponse for the Hourly dataset, for each of our measurement
clients.

[AWS] U.S. West), Virginia (AWS U.S East), São Paulo (AWS
Brazil), Paris (AWS France), Sydney (AWS Australia), and
Seoul (AWS South Korea)—to obtain a comprehensive under-
standing of how responders behave.

We used the above methodology to gather measurements from
536 OCSP responders by issuing 14,634 OCSP requests (i.e., lookup
the revocation status of 14,634 certificates) every hour from April
25, 2018 to September 4, 2018; we refer to these measurements as
the Hourly dataset.
Alexa Top-1M Scan While the Hourly dataset suffices for study-
ing OCSP responders’ behavior in general, it does not capture the
behavior of OCSP responders of popular domains’ certificates. To
address this limitation, we collected a second dataset by sending
OCSP requests to all domains in the Alexa Top-1M list [4] that
support HTTPS and OCSP.

Of the Alexa Top-1M domains, we identified 606,367 certificates
corresponding to the domains that support HTTPS and OCSP in
their root certificates. Using the same six vantage points used for the
Hourly dataset, we perform OCSP lookups once for these 606,367
certificates, measuring responses from 128 OCSP responders, on
May 1st, 2018. We refer to this data set as the Alexa1M dataset.

In the remainder of this section, we utilize these two datasets to
examine the availability and reliability of today’s OCSP responders.

5.2 Availability
To support OCSP Must-Staple, CAs need to run OCSP responders
that are highly available to provide OCSP responses to web servers.
We begin by examining how reliable their OCSP responders are
over time. We first focus on the portion of OCSP responses where
we are unable to successfully interact with the OCSP responder. As
OCSP requests are sent over HTTP, we define a successful request
as a request that resulted in the server responding with HTTP
status code 200. Reasons for unsuccessful requests can include DNS
failures, inability to connect to the OCSP responder, HTTP status
codes other than 200, etc. Note that a successful request does not by
itself imply that a correct OCSP response was obtained; there could
be malformed responses, invalid signatures, etc. We examine all of
these errors in subsequent sections. Figure 3 plots the fraction of
requests that were successful from the Hourly dataset from each of
our six different vantage points; we make a number of observations.

First, we observe that we were never able to receive successful
requests from all OCSP responders in a given hour in any of our
measurement client locations. On average, 1.7% of requests failed;
in fact, for two OCSP responders,10 we were never able to make
a successful OCSP request from any of our six vantage points.
This implies that clients who are served certificates making use of
these responders would always fail to be able check the revocations
status of all certificates in the chain. For 29 other responders, there
was at least one measurement client that was never able to make
a successful request. Looking into our logs, we find a variety of
reasons why there were persistent failures:
• For 16 responders, we observed persistent DNS lookup failures

(NXDOMAIN) from at least one client;
• For 4 additional responders, we were never able to establish a

TCP connection to them from at least one client;
• For 8 more responders, we persistently received HTTP 4xx or
5xx response codes from at least one client;

• Finally, for 1 responder, at least one client was unable to con-
nect to the HTTPS URL because it was served with an invalid
certificate.
Second, the failure rate varies substantially across different lo-

cations: the average failure rate ranges between 2.2% (Virginia)
and 5.7% (São Paulo) of requests. We find that the measure-
ment clients located at Oregon, São Paulo, Paris, and Seoul al-
ways fail to fetch OCSP responses from one, seven, one, and
four responders, respectively. For example, five OCSP URLs are
subdomains of *.digitalcertvalidation.com, all of which return
HTTP 404 errors to our measurement client located in São Paulo;
statush.digitalcertvalidation.com is one of those URLs. Unfortu-
nately, a certificate of wellsfargo.com, which is one of the largest
banks in the United States, relies on this OCSP URL; hence, any
client in São Paulo would not be able to fetch the certificate re-
vocation status of wellsfargo.com from OCSP servers even if the
certificate were compromised and revoked.11

Third, we observe multiple transient outages, which usually last a
couple of hours. During our measurement period, we observed that
211 (36.8%) OCSP responders experienced at least one outage from
at least one vantage point.12 For example, we notice that all of our
OCSP requests made to ocsp.comodoca.com failed at 7pm, April
25 for two hours. Interestingly, this outage was observed only at the
clients in Oregon, Sydney, and Seoul. We also found that an addi-
tional 14 OCSP responders experienced outages at the same time, all
of which were related to Comodo: the domain names of eight OCSP
responders had CNAME records that pointed to ocsp.comodoca.com,
and the domain names of the remaining six OCSP responders re-
solved to the same IP address as ocsp.comodoca.com. Similarly,
we found that all of our OCSP requests to the servers managed by
wosign and startssl failed at 10pm, August 3 for an hour across

10https://ocsp.IdenTrustSAFEca1.identrust.com,
https://ocsp.IdenTrustSAFERootca2.identrust.com

11These OCSP servers were fixed at 11pm, August 31.
12Interestingly, we observed decreasing trends of the percentage

of successful requests for the first month (Figure 3). This was due to
that some OCSP servers such as http://ocsp.pki.wayport.net:2560
had become unavailable gradually during that time.

*.digitalcertvalidation.com
statush.digitalcertvalidation.com
wellsfargo.com
wellsfargo.com
https://ocsp.IdenTrustSAFEca1.identrust.com
https://ocsp.IdenTrustSAFERootca2.identrust.com
http://ocsp.pki.wayport.net:2560
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Figure 4: The number of domains in Alexa Top-1M where
we were unable to obtain a successful response. Due to the
outage of ocsp.comodoca.com, 25% of domains were unable
to provide OCSP responses during at least two hours.

the regions. Interestingly, some outages were only observed at the
specific regions; 9 servers managed by Digicert13 were down at
9am, August 27 for 5 hours, which was only observed at the client
in Seoul. Similarly, all of our OCSP requests made from the clients
in Sydney to 16 OCSP servers managed by Certum failed at 5pm,
August 9 for two hours.
Impact of Outages Popular domains’ certificates are usually is-
sued by a small number of CAs [37], meaning their OCSP responders
are likely hosted by a small number of entities. This centralization
potentially creates a small number of points of failure: an outage of
a popular OCSP responder could make many certificates unavail-
able for their revocation check. We now use our Alexa1M dataset
to infer how many popular domains had certificates with unavail-
able OCSP responders, allowing us to estimate the impact of OCSP
responder unavailability.

Figure 4 shows the number of top domains that support OCSP
where clients trying to check the revocation status of that domain’s
certificate were unable to make a successful request during the
measurement period. Surprisingly, almost 163K domains were not
able to provide OCSP responses to the clients in Oregon, Sydney,
and Seoul due to the outage of their OCSP responders on April 25,
2018 for two hours. This was mainly due to the outage of OCSP
servers managed by Comodo as mentioned in the previous analysis.
Similarly, 77K domains were not able to provide OCSP responses
to the clients in Seoul due to the outage of 9 Digicert OCSP servers
on August 27 for 5 hours. We also observe that the client in São
Paulo is always unable to fetch the OCSP responses of 318 (0.05%)
domains’ certificates.
CDN’s Perspective CDNs, which are used by certificate authori-
ties to cache OCSP responses to improve scalability and reliability,
frequently contact OCSP responders. To obtain a CDN’s perspective
on the availability of OCSP responders, we collected logs from Aka-
mai’s CDN servers deployed at two locations that serve a substantial
volume of TLS traffic. The logs, spanning a period of approximately
60 hours, reveal that the CDN contacts a small number of OCSP
responders (approximately 20) compared to our active measure-
ments (Alexa1M dataset). Because most responses are served from

13status(a|d|e|g|h).digitalcertvalidation.com, ocsp.digicert.com,
ocsp(1|2|x).digicert.com
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Figure 5: The percentage of OCSP responses, which are not
able to use due to (1) malformed OCSP structure (ASN.1
structure error), (2) serial unmatch, and (3) signature vali-
dation fails

cache, only a small fraction of TLS connections, unsurprisingly,
cause the CDN servers to contact the OCSP. But in those instances
in which the CDN servers contacted OCSP responders, the HTTP
status codes recorded in the logs indicate a 100% success rate.

5.3 Validity
Even though our measurement client is able to make a successful
request, the response might be invalid due to a number of reasons,
including
• Malformed structure: the client is unable to parse the OCSP

response if it does not follow the ASN.1 specification [34].
• Serial number mismatch: the serial number of the certificate

in the OCSP response does not match the serial number that our
client requested.

• Incorrect signature: the signature in the OCSP response is un-
able to be verified using (1) certificates in the OCSP response or
(2) the issuer’s certificate.
Figure 5 shows the distribution of the errors during our mea-

surement period. We notice that the vast majority of the errors are
caused by a malformed structure of the response, i.e. no responses
that are correctly formed have invalid signatures or mismatched
serial numbers. Examining the malformed responses, we find eight
(1.6%) OCSP responders that persistently malformed responses, in-
cluding empty responses, the value “0”, or even JavaScript pages.
Additionally, we observed a spike in the malformed responses on
April 29, 2018 that lasted for 6 hours; this was due to 6 OCSP respon-
ders from *.sheca.com misbehaving and returning the response
“0” for all requests. They returned those unusable responses again
at 5pm on July 28 2018 for 3 hours. We also found 3 OCSP respon-
ders from postsigum.cz that began returning “0” responses for all
requests on May 1st, 2018. The issue disappeared at 9am on May
12th for 17 hours, but began returning “0” responses again after
then.

5.4 Quality
Finally, we turn to examine the “quality” of the OCSP responses.
Thus far, we have found that we are able to make successful requests
to most OCSP responders, and that most of those responders return
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Figure 6: Cumulative distribution of average number of cer-
tificates in an OCSP response by OCSP responder; 79 (15%)
of responders always put more than one certificate in their
OCSP responses.
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Figure 7: Cumulative distribution of average number of se-
rial numbers in an OCSP response. Note that x axis starts
from 1 and y axis starts from 90%.

valid responses. However, there are a still a number of ways in
which OCSP responses could not meet best practices; we outline
those below.

Superfluous certificates and responses OCSP responses usu-
ally contain a single leaf certificate signed by the same CA to allow
clients to verify the OCSP response. However, the OCSP specifica-
tion allows the responder to include additional certificates to help
validation (even though those certificates should already be on the
client, as they are necessary to validate the certificate that is being
asked about). Thus, if OCSP responders include such certificates,
they typically only serve to make the size of the OCSP response
bigger. Figure 6 shows the cumulative distribution of the number
of the certificates in an OCSP response from the Hourly dataset; we
notice that 14.5% of the responders are sending OCSP responses that
contain more than one certificate. For example, an OCSP responder,
ocsp.cpc.gov.ae, always put four certificate chains including the
root certificate in the OCSP responses, increases OCSP response
size and the time it takes for clients to parse the response.

Similarly, OCSP requests typically concern only a single cer-
tificate (serial number). However, the OCSP specification allows
OCSP responders to include OCSP responses for other, unsolicited
certificates as well; doing so serves to inflate the response. Figure 7
shows the cumulative distribution of the number of the serial num-
bers in one OCSP response from the Hourly dataset. Most of the
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Figure 8: Cumulative distribution of validity period; note
that x extends to 108,130,800 seconds, or 1,251 days!

OCSP responders (96.2%) put just one serial number in one OCSP
response, but 4.8% of them put more than one serial number in the
response. 17 (3.3%) responders always put 20 serial numbers in each
response.
Validity period The thisUpdate and nextUpdate times are a crit-
ical component of OCSP responses, as they define when OCSP
responses are valid; clients will reject OCSP responses if they have
expired—or if they have yet to be valid—even if they were obtained
from the OCSP responder with valid format, signatures, and correct
serial numbers.
Validity Period We refer the period between the thisUpdate and
nextUpdate times as the response’s validity period; this is similar
to the validity period of X.509 certificates. However, unlike the
validity period of X.509 certificates, OCSP responders can set the
nextUpdate to be blank to indicate that newer revocation informa-
tion is always available; this encourages clients not to cache the
OCSP response. As their expiration date does not exist, however,
it is technically always regarded as valid, which could potentially
raise security vulnerabilities with cached responses.

Figure 8 shows the cumulative distribution of average valid-
ity periods for each OCSP responder; note that we regarded the
validity period as infinite seconds when we observe the blank
nextUpdate.14 We immediately notice that the validity periods
are consistent over six different vantage points, suggesting a con-
sistent policy by CAs that have a distributed deployment of OCSP
responders. We also observe that 45 OCSP responders (9.1%) always
set their nextUpdate to be blank, indicating that they can always
provide newer revocation information, which could potentially
increase their incoming workloads as clients may choose to not
cache their responses. Surprisingly, we also notice that 11 OCSP
responders (2%) set their validity periods over one month, which is
potentially dangerous: if the certificate were compromised, there
could be some clients who cache the previous response and would
not obtain a fresh revocation status for up to 1,251 days!
Premature thisUpdate values The thisUpdate and nextUpdate
define the validity period of OCSP responses15; hence, it is critical

14We observe consistent behavior by the OCSP responders that
set nextUpdate to be blank; they always do so for all their re-
sponses.

15Similar to X.509 certificates, all time values in OCSP responses
must be represented as Greenwich Mean Time (Zulu).
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Figure 9: Cumulative distribution of the time between the
thisUpdate and the time that we received the OCSP response
across six different vantage points; we identified 85 (17.2%)
OCSP responders have returned the response without giv-
ing anymargin to their thisUpdate regardless of the vantage
points.

for clients and servers to have synchronized clocks to correctly
determine whether the certificate is valid or not. If client clocks
are behind the thisUpdate value set by the OCSP responder, then
clients will reject the OCSP response as it is yet to be valid. Figure 9
shows the time difference between the thisUpdate and the time
that we received the OCSP response across six different vantage
points; note that we synchronized the clock of clients correctly
using NTP. Interestingly, we observe that 85 (17.2%) OCSP respon-
ders have returned the OCSP responses without having any margin
of error in their thisUpdate (i.e., the response became valid at
the same time our measurement client made the request); 15 (3%)
of OCSP responders even returned OCSP responses with future
thisUpdate times, which indicates that their response would be
rejected as not yet valid.

Expired nextUpdate values We also looked for OCSP responses
where the nextUpdate was set to be behind to the actual time clock
(i.e., responses that had already expired); however, we did not find
any instances of this behavior.

Non-overlapping validity periods OCSP responders may generate an
OCSP response on demand when an OCSP request arrives, or may
cache it and serve the same response over time until it expires for ef-
ficiency. In the latter case, they should update their OCSP responses
before they expire; if they set their validity periods to be less than
or equal to the period where they update the OCSP response, some
clients would not be able to fetch fresh OCSP responses [32]. We
examine how many OCSP responders could have this issue; we
first filter the OCSP responders that generate the OCSP responses
on demand. However, when receiving an OCSP response, we do
not know whether the response has been generated on demand
or not. To address this limitation, we use the producedAt value
in OCSP responses; we only consider OCSP responses where the
difference between producedAt and the time that we received the
response is larger than 2 minutes, which indicates that the response
has not been generated on demand. After filtering we examine (1)
how frequently fresh OCSP responses are generated by calculating
the difference between two producedAt values in two consecutive

scans and (2) if their validityPeriod is less than or equal to those
periods.

Among 483 OCSP responders that we are able to correctly fetch
their time values, we find that 245 (51.7%) OCSP responders do
not generate OCSP responses on demand; for those OCSP respon-
ders, we observe that 7 responders whose validity period is equal
to the period that they update OCSP responses.16 For example,
3 OCSP responders are subdomains of hinet.net, all of which set
validityPeriod of their OCSP responses to 7,200 seconds and
update them every 7,200 seconds. Similarly, a responder from
ocspcnnicroot.cnnic.cn sets the validityPeriod to 10,800 seconds
and updates them at the same rate.17

Consistency between OCSP and CRL Both CRLs and OCSP al-
low clients to check the revocation status of certificates. If certifi-
cates support both extensions, clients are free to use either one of
them (or both); however, regardless of whether or not they have
been revoked, it is assumed that the results are consistent. We now
briefly examine if this is actually the case.
Methodology Our goal in this section is to find if there are discrepan-
cies between the revocation status of certificates in CRL and OCSP;
to this end, we obtain a set of certificates that support both CRL
and OCSP extensions. We first obtain unique CRLs by examining
the Alexa Top-1M domains’ certificates where they support both
OCSP and CRLs; among the unique 1,579 CRLs used by this set, we
find that certificates that use 1,568 of the CRLs also support OCSP.
Thus, most CAs support both CRLs and OCSP.18

We then download all 1,568 CRLs, parse them, and obtain the set
of revoked serial numbers and their timestamps; this set contains
2,041,345 different serial numbers. When trying to issuing OCSP
requests with the serial numbers, we face a significant challenge:
CRLs only contain serial numbers, revoked time, and (optional)
revoked reasons, not the validity period of certificates. OCSP re-
sponders are allowed to return an Unknown response if the queried
certificates has expired, potentially skewing our results. To address
this limitation, we only consider the certificates that we know to be
valid: we cross-reference these 2,041,345 serial numbers with the
certificate dataset we introduced in Section 4, looking for matching
serial numbers and issuers. We then disregard any certificates that
appear in the CRLs but have already expired. From this process, we
obtain 728,261 unexpired-and-revoked certificates that cover 1,193
CRLs; we issue OCSP requests for each of these certificates on May
1st, 2018 and we are able to collect 727,440 (99.9%) OCSP responses.
Discrepancy: Revocation Status If the revocation status of certificates
is not consistent across CRL and OCSP, it would raise significant
concerns; the revoked certificates might be treated as valid depend-
ing on which revocation protocol clients choose. We examine the
revocation status from OCSP responses and CRLs to see if there are

16Fortunately, we do not observe any responders who update
their responses less frequently than their validityPeriod.

17Interestingly, we often observe that the difference between
producedAt values between consecutive scans of this responder
goes negative every 3 or 4 scans; from manual investigation, we
noticed that they run multiple OCSP responders sharing the same IP
address. This indicates that clients might get stale OCSP responses
depending on which responder they would connect to.

18Let’s Encrypt is a notable exception, as it only supports OCSP.

hinet.net
ocspcnnicroot.cnnic.cn
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OCSP URL CRL
# of Certificates

where the OCSP response is
Unknown Good Revoked

ocsp.camerfirma.com crl1.camerfirma.com/camerfirma cserverii-2015.crl 0 7 369
ocsp.quovadisglobal.com crl.quovadisglobal.com/qvsslg3.crl 0 1 514
ocsp.startssl.com crl.startssl.com/sca-server1.crl 0 1 980
ss.symcd.com ss.symcb.com/ss.crl 0 1 28,023
twcasslocsp.twca.com.tw/ sslserver.twca.com.tw/sslserver/Securessl revoke sha2 2014.crl 0 1 122
ocsp2.globalsign.com/gsalphasha2g2 crl2.alphassl.com/gs/gsalphasha2g2.crl 5,375 0 0
ocsp.firmaprofesional.com crl.firmaprofesional.com/infraestructura.crl 11 0 0

Table 1: Among 1,193 CRLs, we found 7 CRLs where at least one certificate in the CRL is not regarded as revoked when we send
an OCSP request to the corresponding OCSP responder.

any discrepancies; surprisingly, we found seven OCSP responders
that responded with different revocation status. Table 1 shows the
CRLs and corresponding OCSP URLs that have discrepancies. We
observe that five of these OCSP responders returned Good—and
two responders returned Unknown—for at least one certificate that
appears in that CA’s CRL (i.e., is revoked according to the CRL)19

In fact, one of these responders returned Unknown for all 5,375
certificates that appeared on the CA’s CRL.
Discrepancy: Revocation Time It is important for CAs to update the
revocation status of certificates in a timely manner upon revoking
certificates; if it were updated later in either CRLs or OCSP, the
clients who rely on the “late” revocation protocol would not be able
to notice revocations until it is updated. We examine the difference
between the revocation times in OCSP responses and CRLs.20

Figure 10 shows the cumulative distribution of the revocation
time of certificates in CRLs subtracted from that of OCSP responses.
First, we observe that only 863 OCSP responses (0.15%) have dif-
ferent revocation time, which indicates that the revoked time is
usually updated simultaneously to CRLs and OCSP responders. Of
those who have different revoked times, we notice that 127 (14.7%)
of the revoked responses have negative time differences, which im-
ply that the OCSP response is updated later. Interestingly, we find
that all the revoked certificates’ revoked time retrieved from one
OCSP responder, ocsp.msocsp.com are behind the corresponding
CRL by between 7 hours and 9 days!
Discrepancy: Revocation Reason Finally, when a certificate is revoked,
both CRL and OCSP can contain a reason code21 that is supposed
to explain why the certificate was revoked. While the reason codes
are not typically used by clients, we nevertheless examine the dis-
crepancies of the revocation reason codes as an additional measure

19We contacted all five of those CAs to report our findings; Quo-
vadis and Camerfirma responded that they maintain two different
databases for revocation status of CRL and OCSP server, which
might cause inconsistent revocation status of certificates. More
specifically, Quovadis said that those expired certificates were re-
jected upon insertion into the OCSP database due to max character
size (e.g., the certificates with over 100 SAN Fields).

20As it is impossible to measure externally when the certificate
is actually revoked, we assume that the revocation times specified
both in CRLs and OCSP reflect when it is updated, which CAs are
supposed to do; the revocation time is defined as the time at which
the certificate was revoked [5, 34].

21Both CRLs and OCSP share the same set of revocation reason
codes [5].
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Figure 10: Note that x axis starts from -43,200 seconds and
14.7% of time differences are negative, whichmeans that the
revocation time in the OCSP response is earlier than that in
the CRL. The long tail for the difference of revoked times
extends to over 137M seconds (which is over 4 years!).

of consistency between CRLs and OCSP. We find more than 87,000
(15%) cases where revocation reasons differ; however, the vast ma-
jority (99.99%) is due to cases where the CRL contains a reason code
but the OCSP server does not. This result aligns with the previous
findings that the vast majority of the revocations actually include
no reason code [21].

6 CLIENTS
We now turn to examine the role that clients (e.g., web browsers)
play in deploying OCSP Must-Staple. To correctly support OCSP
Must-Staple, clients must (1) solicit OCSP responses from the web
server during the TLS handshake by adding the Certificate
Status Request extension to the request, and (2) reject certifi-
cates that have the OCSP Must-Staple extension but were served
without a valid OCSP response. In this section, we explore the extent
to which the most popular TLS clients—web browsers—correctly
support OCSP Must-Staple.

Methodology First, we purchase a domain name and obtain a valid
certificate with the Must-Staple extension issued by Let’s Encrypt.
Then, we run the Apache web server and configure it to serve
this certificate. However, we deliberately disable OCSP Stapling,22

which prevents Apache from serving an OCSP response during the
TLS handshake.

22We use the setting SSLUseStapling off.

ocsp.camerfirma.com
crl1.camerfirma.com/camerfirma_cserverii-2015.crl
ocsp.quovadisglobal.com
crl.quovadisglobal.com/qvsslg3.crl
ocsp.startssl.com
crl.startssl.com/sca-server1.crl
ss.symcd.com
ss.symcb.com/ss.crl
twcasslocsp.twca.com.tw/
sslserver.twca.com.tw/sslserver/Securessl_revoke_sha2_2014.crl
ocsp2.globalsign.com/gsalphasha2g2
crl2.alphassl.com/gs/gsalphasha2g2.crl
ocsp.firmaprofesional.com
crl.firmaprofesional.com/infraestructura.crl
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Desktop Browsers Mobile Browsers
Chrome 66 Firefox 60 Opera Safari IE Edge Safari Chrome Firefox

OS X Lin. Win. OS X Lin. Win. OS X Win. 11 11 42 iOS iOS And. iOS And.
Request OCSP response ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Respect OCSP Must-Staple ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Send own OCSP request ✗ ✗ ✗ - - - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ -
Table 2: Browser test results; all of the desktop and mobile browsers request OCSP responses in the SSL/TLS handshake (indi-
cated as ✓); however, most of the browsers, except the Firefox on Android and across three desktop OSes, show warnings or
terminate the connection even though they do not receive an OCSP response with an OCSP Must-Staple certificate (indicated
as ✗). Also none of those browsers who accept the certificate make own OCSP request to the OCSP responder.

We then choose a variety of popular web browsers; Chrome,
Firefox, Opera, Safari, Internet Explorer, and Microsoft Edge on
desktop OSes (OS X, Linux, Windows) and mobile OSes (iOS and
Android).23 From each client, we try to connect to our test domain.
While doing so, we capture all traffic generated from the client
to ascertain whether it solicits an OCSP response by sending the
Certificate Status Request extension in the TLS handshake [1].
If so, we then determine whether the client refuses to accept the
certificate, makes its own OCSP request to the OCSP Responder24,
or simply accepts the certificate with no revocation information at
all.

Results The results of this experiment are summarized in Table 2.
We first observe that all browsers do solicit stapled OCSP responses,
indicating that they support OCSP Stapling. Compared to the pre-
vious work from 2015 [22], we are able to confirm that Safari’s
behavior has changed, as it previously did not even request a sta-
pled OCSP response. However, we observe that only Firefox (on all
desktops OSes and on Android) displays a certificate error to the
user if a stapled OCSP response is not included with a certificate
that includes the OCSP Must-Staple extension; all other browsers
(including Firefox on iOS) simply accept the certificate and do not
even send their own OCSP request to the OCSP responder. These
results indicate that clients are largely not yet ready for OCSP
Must-Staple. However, it does appear that all clients already sup-
port OCSP Stapling, meaning the additional coding work necessary
to support OCSP Must-Staple is likely not too significant.

7 WEB SERVER ADMINISTRATORS
As a final point of analysis, we turn to examine the role that web
server administrators play in deploying OCSP Must-Staple. When
certificates support OCSP Must-Staple, the OCSP response must
come from the web server as part of the TLS handshake. Thus, these
web servers are required to periodically fetch fresh OCSP responses
from the OCSP responders to use when communicating with clients.
In this section, we examine the current status of OCSP Staple sup-
port by web servers in-the-wild, and we test two well-known web
servers (Apache and Nginx) to see how well they correctly support
OCSP Must-Staple.

23All tests were done on Ubuntu 16.04, Windows 10, OS X 10.12.6,
iOS 11.3, and Android Oreo.

24Note that Let’s Encrypt certificates do not support CRLs, so no
client will request CRLs in our experiments.
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Figure 11: OCSP Staple adoption as a function ofwebsite pop-
ularity; the most popular websites that support OCSP tend
to do OCSP Stapling as well.

7.1 OCSP Stapling support
We begin by examining how commonly OCSP Stapling is deployed
by web server administrators today. A certificate by itself does not
tell whether an administrator has enabled OCSP Stapling; instead,
we need to see if the web server provides an OCSP response during
the TLS handshake. To do so, we use the TLS handshake scans of
Alexa Top-1M domains collected by Censys [9] that were collected
on April 30, 2018. This dataset contains the complete logs of TLS
handshakes with the root domain of all Alexa Top-1M domains.
Figure 11 shows the percentage of domains with OCSP-enabled
certificates that support OCSP Stapling. We observe that roughly
35% of the domains do so, and that popular domains are more likely
to support OCSP Stapling.

Next, we briefly look at how this support has changed over time.
To do so, we obtain the same TLS handshake scans of Alexa Top-
1M domains from Censys [9] on a monthly basis going back to
May 2016. Figure 12 plots the fraction of domains that support
OCSP and those that support OCSP Stapling as well. We first notice
that both fractions of (1) HTTPS domains that support OCSP and
(2) those domains that also support OCSP stapling are steadily
growing. Interestingly, we notice a spike in June 2017 that was due
to Cloudflare. The number of domains that support OCSP Stapling
and serve certificates containing one of the Cloudflare’s domains25

is 11,675 on May 18, 2017 but increases to 78,907 by June 15, 2017.

25These certificates are called “cruise-liner” certificates [6];
they contain many domains per certificate, which allows hosting
providers to serve many domains.
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Figure 12: The percentage of OCSP and OCSP Stapling adop-
tion from monthly-fetched Censys Alexa 1M datasets since
May 21st, 2016. Note that the certificates that support OCSP
Must-stale are not shown here as there are the only 100 cer-
tificates found in the latest snapshot.

7.2 Software Support
If we are to move towards a larger deployment OCSP Must-Staple,
web server software must have a correct implementation of OCSP
Stapling. In other words, web servers must (1) provide OCSP re-
sponses in TLS handshakes without causing extra delays to the
clients, (2) cache OCSP responses and use them correctly consider-
ing their validity periods, and (3) cope with intermittent unavail-
ability and errors of OCSP responders. However, it remains unclear
whether web servers achieve these objectives [36].

In this section, we examine whether popular web server software
correctly supports OCSP Stapling; more specifically, we focus on
their behaviors in three perspectives:

• Performance: First, we see if web server software proactively
fetches OCSP responses. If web servers do not—and instead fetch
OCSP responses on-demand—this could either introduce unnec-
essary latency in completing the TLS handshake, or cause the
web server to not include an OCSP response when responding
to the first (few) client(s).

• Caching: Second, web servers should cache OCSP responses for
efficiency. However, web servers should respect the expiration
time of OCSP responses (nextUpdate), and remove them from
the cache once they have expired.

• Availability: Third, when fetching an updated OCSP response,
web servers may encounter an OCSP responder that is unavail-
able or returns an error (e.g., tryLater [34]). In such cases, the
web server should retain the existing cached OCSP response until
it expires (while periodically retrying with the OCSP responder).

Test suite implementation We first implement an OCSP respon-
der that we control by modifying the Python ocspresponder li-
brary [25]. We also implement our test suite with a Python script
that generates a unique DNS name we control, then uses OpenSSL
to generate a certificate chain with (1) the OCSP URL that we man-
age in the AIA extension and (2) the OCSP Must-Staple extension.

Experiment Apache Nginx
Prefetch OCSP response ✗ (pause conn.) ✗ (provide no resp.)
Cache OCSP response ✓ ✓

Respect nextUpdate in cache ✗ ✓

Retain OCSP response on error ✗ ✓

Table 3: Table showing our experiment results on web
servers’ correct implementation of OCSP Must-Staple sup-
port. Neither popular web server does so completely cor-
rectly.

We examine two popular web server software implementations:
Apache version 2.4.18 and Nginx version 1.13.12.26

Results Our results are summarized in Table 3; we make a few
observations below. First, we notice that both web servers do not
prefetch the OCSP responses even though they serve certificates
with the Must-Staple extension; instead, they fetch an OCSP re-
sponse when they receive the first incoming connection that uses a
given certificate. However, their behavior differs with how they re-
spond to this first client: Apache “pauses” the TLS handshake until
the OCSP response comes in, while Nginx simply does not provide
an OCSP stapled response to the first client. Thus, the first client(s)
using Apache will experience delays, while those using Nginx that
respect OCSP Must-Staple (e.g., Firefox) will refuse to accept the
certificate.27 Second, we observe that Apache does not respect the
expiration time of the OCSP response and will continue to serve
OCSP responses from the cache even after they expire. In contrast,
Nginx will fetch a new OCSP response.28 Third, we observe that
when the web server encounters an error communicating with the
OCSP responder (unavailability or an error response), Apache also
deletes the old (still valid) OCSP response and either provides no
OCSP response (if the OCSP responder is unavailable) or serves the
error response itself (if the OCSP responder returns an error). In
contrast, Nginx retains the old OCSP response and keeps providing
it to clients until it expires.

In summary, we observe that both well-known web servers do
not fully support OCSP Must-Staple correctly. We believe these
undesirable behaviors of web servers could become a serious chal-
lenge for web administrators who choose to serve certificates with
the OCSP Must-Staple extension: the clients that correctly support
the extension might not be able to connect to their domains inter-
mittently due to the above issues. We responsibly reported these
issues to Apache Bugzilla [26].

8 CONCLUDING DISCUSSION
We examined whether today’s web is ready for OCSP Must-Staple
by measuring three major principals—OCSP responders, clients

26Note that neither web server implementation supports OCSP
Stapling by default; we were required to enable a few configuration
parameters.

27We noticed that this bug was reported over 3 years ago [12],
but it has not fixed yet.

28Actually, Nginx does not refresh the cache more than once
every 5 minutes; hence, if the validity period of an OCSP response
is less than 5 minutes, clients could receive an expired (cached)
OCSP response.
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(browsers), and web servers—to see if what they are doing correctly
supports OCSP Must-Staple.

We observe that 36.8% of OCSP responders experienced at least
one outage which typically lasted a few hours. Considering that the
OCSP responses can be cached and their median validity periods
are a week, we believe that OCSP responders would not be a barrier
for the wide adoption of OCSP Must-Staple deployments, although
availability of OCSP responders is certainly an area that could be
improved. However, the number of certificates that already supports
OCSP Must-Staple is minuscule; only 29,709 (0.02%) certificates
currently support it.

We develop a test suite for web browsers and deploy it to the
most recent versions of all major browsers on both mobile and desk-
top devices. Overall, we find that the fraction that correctly support
OCSP Must-Staple is surprisingly low: all of the browsers other than
Firefox do not bother to ensure that stapled OCSP responses are
actually included. Lastly, we also checked if popular web server soft-
ware (Apache and Nginx) correctly fetch and serve OCSP responses.
Unfortunately, we find that neither of them prefetch an OCSP re-
sponse, which introduces unnecessary latency in completing the
SSL/TLS handshake with clients. We also found two implementa-
tion problems in Apache: it serves expired OCSP responses from
the cache and discards previous, valid OCSP responses when it
encounters an error communicating with the OCSP responder.

Considering OCSP Must-Staple can operate only if each of the
principals in the PKI performs correctly, we conclude that, currently,
the web is not ready for OCSP Must-Staple.

Recommendations However, on a positive note, we observe that,
with correct action by relatively few parties, transition to OCSP
Must-Staple would be easy for web site operators. We make the
following recommendations to that end:

(1) Certificate authorities: Unlike other revocation mecha-
nisms, OCSP Must-Staple is designed to follow a hard-fail
approach—clients must reject the OCSP Must-Staple enabled
certificate if they do not receive a stapled OCSP response
from the web server. Therefore, Certificate Authorities (CAs)
should bolster the availability and reliability of their OCSP
responders.
We recommend improvements on two broad fronts: First,
OCSP responders ought to test the validity of their responses.
Test harnesses like ours can help towards this end (we will be
making our code and data publicly available). Second, our re-
sults show that OCSP responders have variable reachability
to different regions of the world. An important area of im-
provement for OCSP Must-Staple to work is to develop glob-
ally reachable and reliable services. The networked systems
community has extensive experience in this domain, such as
with distributed hash tables [28] and global replication [16];
this would be a logical application of such techniques.

(2) Web server software developers: Web server software
should pre-fetch OCSP responses from the OCSP respon-
ders on a regular basis even if there are no clients who have
attempted to make TLS connections. This will help reduce
unnecessary latency to clients during their TLS handshakes
and cope with intermittent unavailability and errors of OCSP
responders. Our results indicate that, for most CAs and most

locations, web servers would not have to be very aggres-
sive, as most failures persist far shorter than most OCSP
responses’ validity periods.

(3) Browsers: Clients must begin to actually check if OCSP Sta-
ple responses are delivered, fully validate those responses,
and hard-fail if a staple is invalid or unavailable. We doubt
that browsers will be a driving force behind OCSP Must-
Staple; until web servers proactively fetch and OCSP respon-
ders deliver valid responses, clients will have little incentive
to hard-fail.

Only when each of these parties performs these actions can
website administrators reliably employ Must-Staple.
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