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Abstract

Recently, online social networking sites have exploded in popularity. Numerous sites

are dedicated to finding and maintaining contacts and to locating and sharing different

types of content. Online social networks represent a new kind of information network

that differs significantly from existing networks like the Web. For example, in the

Web, hyperlinks between content form a graph that is used to organize, navigate, and

rank information. The properties of the Web graph have been studied extensively,

and have lead to useful algorithms such as PageRank. In contrast, few links exist

between content in online social networks and instead, the links exist between content

and users, and between users themselves. However, little is known in the research

community about the properties of online social network graphs at scale, the factors

that shape their structure, or the ways they can be leveraged in information systems.

In this thesis, we use novel measurement techniques to study online social net-

works at scale, and use the resulting insights to design innovative new information

systems. First, we examine the structure and growth patterns of online social net-



works, focusing on how users are connecting to one another. We conduct the first

large-scale measurement study of multiple online social networks at scale, capturing

information about over 50 million users and 400 million links. Our analysis identifies

a common structure across multiple networks, characterizes the underlying processes

that are shaping the network structure, and exposes the rich community structure.

Second, we leverage our understanding of the properties of online social networks

to design new information systems. Specifically, we build two distinct applications

that leverage different properties of online social networks. We present and evaluate

Ostra, a novel system for preventing unwanted communication that leverages the

difficulty in establishing and maintaining relationships in social networks. We also

present, deploy, and evaluate PeerSpective, a system for enhancing Web search using

the natural community structure in social networks. Each of these systems has been

evaluated on data from real online social networks or in a deployment with real

users.



Acknowledgments

First and foremost, I would like to thank my advisors, Peter Druschel and Krishna P.

Gummadi, for their help, advice, and mentoring during my graduate career. Without

their support and guidance, none of the work presented in this thesis would have

been possible. Moreover, I am deeply indebted to them both for showing me how to

do successful research, how to mentor students, and how to communicate research

results effectively. I suspect that this debt will only grow over time, as I use these

skills in my own research career.

I would also like to thank Eugene Ng for his service on my thesis committee.

His insight and advice proved very useful during the preparation of this thesis, and

in my search for a tenure-track job. I am also grateful to have worked with Bobby

Bhattacharjee – his advice and enthusiasm played no small part in my decision to

continue a career in academia.

I am extremely grateful to have worked with and mentored numerous talented

students during my research career. Working with Bimal, Malveeka, and Hema was a

pleasure, and the excitement and energy they each brought to their research was both

refreshing and invigorating. I hope that I am lucky enough to work with students of

a similar caliber in the future.



v

I am deeply indebted to Brigitta Hansen, Claudia Richter, and Belia Martinez,

whose assistance with many administrative matters proved invaluable. They all made

living in Germany while finishing a Ph.D. at Rice a much easier experience.

I would also like to thank my colleagues and friends in Saarbrücken: Ansley,

Animesh, Atul, Andreas, Jeff, Jim, Rodrigo, Andrey, Derek, Rose, Marcel, Max,

Nuno, Pedro, Mia, and Ashu. They all made MPI-SWS a wonderful place to be, and

being in Germany is an experience that I will always treasure.

I am also grateful for my close friendship with Rebecca. Her contagious excitement

and enthusiasm was always refreshing, and I benefited greatly from her insight and

advice. Additionally, I am grateful for my friendship with Stephanie – our travels

and adventures often provided a needed break from research.

Finally, I would like to express my deep gratitude to my family, and especially my

parents, for their love and support during the ups and downs of graduate school. I

am grateful beyond words for all that they have given me.



Contents

Abstract ii

Acknowledgments iv

List of Illustrations xv

List of Tables xxii

1 Introduction 1

1.1 Background, related work, and methodology . . . . . . . . . . . . . . 4

1.2 Network structure and growth . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Communities in online social networks . . . . . . . . . . . . . . . . . 7

1.4 Ostra: Leveraging relationships . . . . . . . . . . . . . . . . . . . . . 8

1.5 Peerspective: Leveraging shared interest . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 What are online social networks? . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Definition and purpose . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Mechanisms and policies . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 A new form of information exchange . . . . . . . . . . . . . . 17



vii

2.2 Why study online social networks? . . . . . . . . . . . . . . . . . . . 19

2.2.1 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Shared interest . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Content exchange . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Other disciplines . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 How do we analyze complex networks? . . . . . . . . . . . . . . . . . 23

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Radius and diameter . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Joint degree distribution . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Scale-free behavior . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Assortativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.7 Clustering coefficient . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.8 Betweenness centrality . . . . . . . . . . . . . . . . . . . . . . 27

2.3.9 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.10 Connected components . . . . . . . . . . . . . . . . . . . . . . 29

2.3.11 Classes of studied networks . . . . . . . . . . . . . . . . . . . 30

2.3.12 Preferential attachment . . . . . . . . . . . . . . . . . . . . . 31

3 Related Work 32

3.1 Complex network structure . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Social networks . . . . . . . . . . . . . . . . . . . . . . . . . . 33



viii

3.1.2 Other information networks . . . . . . . . . . . . . . . . . . . 35

3.2 Complex network growth . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Growth models . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Observations of network growth . . . . . . . . . . . . . . . . . 39

3.3 Detecting communities . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Classical community detection . . . . . . . . . . . . . . . . . . 41

3.3.2 Global community detection . . . . . . . . . . . . . . . . . . . 42

3.3.3 Local community detection . . . . . . . . . . . . . . . . . . . . 44

3.3.4 Observations of communities . . . . . . . . . . . . . . . . . . . 46

3.4 Preventing unwanted communication . . . . . . . . . . . . . . . . . . 47

3.4.1 Content-based filtering . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Originator-based filtering . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Imposing a cost on the sender . . . . . . . . . . . . . . . . . . 50

3.4.4 Content rating . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.5 Leveraging relationships . . . . . . . . . . . . . . . . . . . . . 53

3.5 Personalized web search . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Measurement Methodology 57

4.1 Challenges in crawling large graphs . . . . . . . . . . . . . . . . . . . 57

4.1.1 Crawling the entire large WCC . . . . . . . . . . . . . . . . . 58

4.1.2 Using only forward links . . . . . . . . . . . . . . . . . . . . . 59

4.2 Capturing social networks’ structure . . . . . . . . . . . . . . . . . . 60



ix

4.2.1 Flickr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 LiveJournal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Orkut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 YouTube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.5 Web graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Capturing group membership . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Capturing social networks’ growth . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Flickr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 YouTube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.4 Internet topology . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Capturing communities . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Measurement methodology . . . . . . . . . . . . . . . . . . . . 73

4.5.2 Collected data . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Network Structure 77

5.1 High-level data statistics . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Link symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Power-law node degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 80



x

5.4 Correlation of indegree and outdegree . . . . . . . . . . . . . . . . . . 85

5.5 Path lengths and diameter . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Link degree correlations . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Joint degree distribution . . . . . . . . . . . . . . . . . . . . . 88

5.6.2 Scale-free behavior . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.3 Assortativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Densely connected core . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 Tightly clustered fringe . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.10.1 Information dissemination and search . . . . . . . . . . . . . . 99

5.10.2 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Network Growth 102

6.1 High-level data characteristics . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Growth dominates network evolution . . . . . . . . . . . . . . . . . . 104

6.3 Reciprocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Preferential attachment . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 Undirected networks . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 Directed networks . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



xi

6.5 Proximity bias in link creation . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Mechanisms causing proximity bias . . . . . . . . . . . . . . . . . . . 114

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.7.1 Is proximity fundamental? . . . . . . . . . . . . . . . . . . . . 118

6.7.2 Proximity mechanisms . . . . . . . . . . . . . . . . . . . . . . 120

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Network Communities 122

7.1 Data sets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Attributes in the network . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 Friends with common attributes . . . . . . . . . . . . . . . . . 125

7.2.2 Attribute-based communities . . . . . . . . . . . . . . . . . . . 126

7.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Detecting communities . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3.1 Global community detection . . . . . . . . . . . . . . . . . . . 131

7.3.2 Local community detection . . . . . . . . . . . . . . . . . . . . 134

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Ostra: Leveraging Relationships 146

8.1 Ostra strawman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.1.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



xii

8.1.3 User credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1.4 Credit adjustments . . . . . . . . . . . . . . . . . . . . . . . . 153

8.1.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.1.6 Multi-party communication . . . . . . . . . . . . . . . . . . . 159

8.2 Ostra design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.1 Trust networks . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.2 Link credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2.3 Security properties . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.3.1 Joining Ostra . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.3.2 Content classification . . . . . . . . . . . . . . . . . . . . . . . 172

8.3.3 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . 173

8.3.4 Compromised user accounts . . . . . . . . . . . . . . . . . . . 174

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4.1 Experimental trust network . . . . . . . . . . . . . . . . . . . 174

8.4.2 Experimental traffic workload . . . . . . . . . . . . . . . . . . 176

8.4.3 Setting parameters . . . . . . . . . . . . . . . . . . . . . . . . 177

8.4.4 Effectiveness of Ostra . . . . . . . . . . . . . . . . . . . . . . . 179

8.5 Decentralizing Ostra . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.5.2 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



xiii

8.5.3 Bloom filter routing . . . . . . . . . . . . . . . . . . . . . . . . 187

8.5.4 Landmark routing . . . . . . . . . . . . . . . . . . . . . . . . 189

8.5.5 Decentralized credit update . . . . . . . . . . . . . . . . . . . 191

8.5.6 Security and privacy . . . . . . . . . . . . . . . . . . . . . . . 194

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9 PeerSpective: Leveraging Shared Interest 196

9.1 The Web versus social networks . . . . . . . . . . . . . . . . . . . . . 197

9.1.1 The Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.1.2 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.1.3 Leveraging shared interest in Web search . . . . . . . . . . . . 202

9.2 PeerSpective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.2.2 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.2.3 Experimental methodology . . . . . . . . . . . . . . . . . . . . 205

9.2.4 Limits of hyperlink-based search . . . . . . . . . . . . . . . . . 206

9.2.5 Benefits of social network-based search . . . . . . . . . . . . . 208

9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.3.1 Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.3.2 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9.3.3 Serendipity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211



xiv

10Conclusion 213

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Bibliography 220



Illustrations

4.1 Users reached by crawling different link types. If only forward links

are used, we can reach only the inner cloud (shaded cloud); using

both forward and reverse links, we can reach the entire WCC (dashed

cloud). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Log-log plot of outdegree complementary cumulative distribution

functions (CCDF). All social networks show properties consistent

with power-law networks. . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Log-log plot of indegree complementary cumulative distribution

functions (CCDF). All social networks show properties consistent

with power-law networks. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Plot of the distribution of links across nodes. Social networks show

similar distributions for outgoing and incoming links, whereas the

Web links shows different distributions. . . . . . . . . . . . . . . . . . 84



xvi

5.4 Plot of the overlap between top x% of nodes ranked by outdegree and

indegree. The high-indegree and high-outdegree nodes are often the

same in social networks, but not in the Web. . . . . . . . . . . . . . . 86

5.5 CDF of outdegree to indegree ratio. Social networks show much

stronger correlation between indegree and outdegree than the Web. . 86

5.6 Log-log plot of the outdegree versus the average indegree of friends.

The scale-free metrics, included in the legend, suggest the presence of

a well-connected core. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Breakdown of network into SCCs when high-degree nodes are

removed, grouped by SCC size. . . . . . . . . . . . . . . . . . . . . . 92

5.8 Average path length among the most well-connected nodes. The path

length increases sub-logarithmically. . . . . . . . . . . . . . . . . . . . 93

5.9 Clustering coefficient of users with different outdegrees. The users

with few “friends” are tightly clustered. . . . . . . . . . . . . . . . . . 95

5.10 Plot of group size and average group clustering coefficient. Many

small groups are almost cliques. . . . . . . . . . . . . . . . . . . . . . 97

5.11 Outdegree versus average number of groups joined by users. Users

with more links tend to be members of many groups. . . . . . . . . . 98



xvii

6.1 CDF of time between establishment of the two directed links of a

symmetric link. In both Flickr and Youtube, links are quickly

reciprocated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Log-log plot of outdegree versus number of new links per day. All

networks show strong evidence of preferential attachment. . . . . . . 108

6.3 Log-log plot of indegree versus number of new links per day. All

networks show strong evidence of preferential attachment. . . . . . . 108

6.4 Log-log plot of degree versus number of new links per day. All

networks show strong evidence of preferential attachment. . . . . . . 109

6.5 CDF of distance between source and destination of observed links

(Obs). Also shown is the expected CDF from BA model (BA). The

numbers in parenthesis are the fraction of all new links connecting

nodes that had, a priori, some path between them. All networks show

a proximity bias that is not predicted by the BA model. . . . . . . . 113

6.6 CDF of nodes receiving new links by indegree. Plots are shown for

observed data (Obs), and simulated mechanisms: random selection

(RS), random 2-hop walk (RW), preferential selection (PS), common

neighbors (CN), and Jaccard’s coefficient (JC). The observed data

does not match any one mechanism, suggesting that different

mechanisms are at play in different networks. . . . . . . . . . . . . . 116



xviii

7.1 Normalized mutual information versus the fraction of users who

reveal their community for Rice undergraduates. Revealing more

information naturally leads to partitionings with higher correlations,

especially for the college and year attributes. This result shows that

different attributes can be accurately inferred with as few as 20% of

users revealing their attributes. . . . . . . . . . . . . . . . . . . . . . 132

7.2 Normalized mutual information versus the fraction of users who

reveal their community for Rice graduate students. . . . . . . . . . . 133

7.3 Recall and precision of single community detection for Rice

undergraduates for multiple algorithms. Good performance is

observed for our algorithm (Norm. Cond.) for college and year;

detecting users with the same major performs poorly due to the low

correlation with communities in the network. The algorithm of Luo

performs well at inferring college but does not perform well for

inferring matriculation year. . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Recall and precision for matriculation year community detection for

Rice undergraduates for our algorithm. Individual lines are shown for

each matriculation year. Certain values of user attributes are easier

to detect than others. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.5 Detail on recall and precision for college inference for Rice

undergraduates with our algorithm. . . . . . . . . . . . . . . . . . . . 142



xix

7.6 Recall and precision for single community detection for Rice graduate

students. Good performance is observed for department and school;

much weaker performance is seen for year. . . . . . . . . . . . . . . . 144

8.1 Diagram of (a) the original communication system S, and (b) the

communication system with Ostra. The three phases of Ostra — (1)

authorization, (2) transmission, and (3) classification — are shown. . 150

8.2 Mapping from (a) per-user credits to (b) per-link credits. . . . . . . . 163

8.3 Link state when X sends communication to friend Y . The state of

the link balance and range is shown (a) before the token is issued, (b)

after the token is issued, (c) if Y marks the communication as

unwanted, and (d) if Y marks the communication as wanted or if the

timeout occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.4 Link state when X sends communication to non-friend Z is shown (a)

before the token is issued, (b) after the token is issued, (c) if Z marks

the communication as unwanted, and (d) if Z marks the

communication as wanted or if the timeout occurs. . . . . . . . . . . 166



xx

8.5 Generalization of per-user credit accounting to per-link credit

accounting. Ostra with per-user credit (shown in (a)) can be

expressed as per-link credit over a star topology (shown in (b)), with

the central site C as the hub. The addition of links (shown in (c))

does not change the properties. . . . . . . . . . . . . . . . . . . . . . 168

8.6 Diagram of how Ostra handles various attacks: (a) a normal user, (b)

multiple identities, and (c) a network of Sybils. The total amount of

credit available to the user is the same. . . . . . . . . . . . . . . . . 169

8.7 Cumulative distribution (CDF) of distance between sender and

receiver for our email trace. The observed data show a strong bias

toward proximity when compared to randomly selected destinations. . 177

8.8 Amount of unwanted communication received by good users as the

number of attackers is varied. As the number of attackers is

increased, the number of unwanted messages delivered scales linearly. 180

8.9 Amount of unwanted communication received by good users as the

maximum credit imbalance per link is varied. . . . . . . . . . . . . . . 182

8.10 Proportion of messages delivered versus false classification probability

for wanted messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



xxi

8.11 Proportion of 3,000 random user pairs for which the min-cut was not

adjacent to one of the users, as a function of the lower of the two

users’ degrees. The fraction decreases as the users become

well-connected, suggesting that a trust network with well-connected

users is not vulnerable to link attacks. . . . . . . . . . . . . . . . . . 184

8.12 Diagram of how credit exchange occurs when X sends to W , with the

penalty for dropping being one credit. The state of the link credits is

shown (a) before the message is sent, (b) before the message is

classified, and (c) after the timeout T if Z drops the message. . . . . 193

9.1 Screenshot of our PeerSpective search interface. Results from the

distributed cache appear alongside the normal Google results. . . . . 204



Tables

4.1 Coverage of social networking site crawls. . . . . . . . . . . . . . . . . 67

5.1 High-level statistics of social networking site crawls. . . . . . . . . . . 79

5.2 Power-law coefficient estimates (α) and corresponding

Kolmogorov-Smirnov goodness-of-fit metrics (D). The Flickr,

LiveJournal, and YouTube networks are well approximated by a

power-law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Average path length, radius, and diameter of the studied networks.

The path length between random nodes is very short in social networks. 88

5.4 The observed clustering coefficient, and ratio to random Erdös-Réyni
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Chapter 1

Introduction

Since its creation, the Internet has spawned many information sharing networks,

the most well-known of which is the World Wide Web. Recently, a new class of

information networks called “online social networks” have exploded in popularity

and now rival the traditional Web in terms of usage [112]. Social networking sites

such as MySpace (over 246 million users)1, Facebook (over 124 million users), Orkut

(over 67 million users), and LinkedIn (over 9 million “professionals”) are examples of

wildly popular networks used to find and organize contacts. Other social networks

such as Flickr, YouTube, and Google Video, are used to share multimedia content,

and others such as LiveJournal and BlogSpot are used to share blogs.

Unlike the traditional Web, which is largely organized by content, online social

networks embody users as first-class entities. Users join a network, publish their own

content, and create links to other users in the network called “friends”. This basic

user-to-user link structure facilitates online interaction by providing a mechanism for

organizing both real-world and virtual contacts, for finding other users with simi-

lar interests, and for locating content and knowledge that has been contributed or

1The number of users refers to the number of identities as of November 2008 as published by

each social networking site.



2

endorsed by “friends”.

The extreme popularity and rapid growth of these online social networks repre-

sents a unique opportunity to study, understand, and leverage their properties. Not

only can an in-depth understanding of online social network structure and growth aid

in designing and evaluating current systems, it can lead to better designs of future

online social network based systems and to a deeper understanding of the impact of

online social networks on the Internet. Online social networks also offer many useful

properties that can be leveraged to enhance information systems, such as enhance-

ments to controlling information propagation, new directions for information search

and retrieval, and new ways of reasoning about trust.

Thus, the goals of this thesis are two-fold, aiming to both understand the prop-

erties of online social networks and leverage those properties in information systems.

We describe each of these in more detail below.

Our first goal is to understand the structure of online social networks, focusing on

the social network graph that connects users. To this end, we conduct the first large-

scale measurement study of online social networks, capturing information about users

in multiple networks at scale. By examining more than one network, we can determine

which structural features are unique to one network, and which are common across all

networks. While the operators themselves obviously have complete data about their

social networks, this data is not generally available to researchers due to competitive

and privacy concerns. Thus, we chose to collect the data ourselves by querying the
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public interface provided. Our collected data (which we have made available to the

research community in anonymized form) represents the first large-scale data set

available to researchers for many of these systems.

Our second goal is to apply our understanding of the properties of online social

networks to build applications that leverage the information contained in social net-

works in innovative ways. In this thesis, we present two applications that address

important challenges for information systems. The first challenge we address is the

problem of unwanted communication, such as unsolicited marketing, propaganda, or

spam. We demonstrate how to leverage the effort required to create and maintain

social relationships in a social network to effectively block users from sending such

communication without impeding legitimate communication. The second challenge

we address is the problem of finding Web pages that are either new, not publicly vis-

ible, or of interest to only a small set of users. Due to the rapid growth of the Web,

such pages are often not included in traditional Web search engines; we demonstrate

how to leverage the shared interest between users in a social network to find such

pages.

At a high level, this thesis is divided into four distinct parts: (a) discussions

of background, related work, and data collection methodology; (b) detailed studies

on the structure and growth of online social networks; (c) an examination of the

communities in online social networks; and (d) the presentation of two new systems

that leverage properties of online social networks. In the next few subsections, we
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describe each part in detail.

1.1 Background, related work, and methodology

This thesis begins with a brief history of online social networks, a discussion of re-

search related to this thesis, and a description of our data collection methodology. In

Chapter 2, we provide background on online social networks and motivate this thesis.

We describe the rapid rise in popularity of these networks and catalog the various

mechanisms that today’s online social networks provide for information sharing. In

Chapter 3 we detail related work from computer science, sociology, graph theory, and

theoretical physics. We describe previous approaches to studying the structure of so-

cial networks, the various data sets that have been collected so far, and applications

that been built on top of social networks.

In Chapter 4 we describe the data sets we have collected for study. We obtained

data from six different online social networks covering over 50 million users connected

together by over 400 million links. We describe the procedures used to collect these

data sets and discuss ways in which our collection methodology limits our analysis.

We also describe which of the data sets we have made publicly available and provide

instructions for accessing them.
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1.2 Network structure and growth

To begin our analysis, we first focus on the graph formed by users in online social

networks. In Chapter 5, we present an analysis of the structure of four popular online

social networks: Flickr, YouTube, LiveJournal, and Orkut. Ours is the first study to

examine multiple online social networks at scale; in contrast, previous studies have

generally relied on proprietary data obtained from the operators of a single large

network. Data gathered from multiple sites enables our analysis to identify common

structural properties of online social networks.

This analysis allows us to validate the power-law, small-world and scale-free prop-

erties previously observed in offline social networks, as well as to provide new insights

into the properties of the social network graphs. We observe a high degree of reci-

procity in directed user links, leading to a strong correlation between user indegree

and outdegree. This differs from content graphs such as the graph formed by Web

hyperlinks, where the popular pages (authorities) and the pages with many references

(hubs) are distinct [74]. Our analysis also shows that online social networks contain a

large, strongly connected core of high-degree nodes, surrounded by many small clus-

ters of low-degree nodes. This suggests that high-degree nodes in the core are critical

for connectivity and information flow in these networks.

We observe an intriguing similarity between the structure of multiple networks,

despite different mechanisms, policies, and conventions for creating links. This sug-

gests that links are created in a similar manner across all of the networks. Thus, in
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Chapter 6, we use empirical data to understand the growth processes that lead to the

observed network structure. Our analysis of large-scale growth data shows that new

links are created and received by users in direct proportion to their current number

of links, and that users tend to quickly respond to incoming links by creating a link

in the reverse direction. Additionally, our analysis reveals a strong proximity bias

when users select other users to link to: users tend to connect to nearby users in the

network much more often than would be expected from previously proposed growth

models.

Our work on studying network growth is an important first step towards un-

derstanding the processes that shape the structure of online social networks. Our

work enables the creation of synthetic networks that reflect both global and local

characteristics of online social networks. Moreover, our collected data may lead to

more accurate structural and growth models, which are useful for network analysis

and planning. Such models can be used in the design of search algorithms (e.g., by

pre-identifying users that are likely to be hubs), in data mining (e.g., by identifying

candidate users to monitor), and in system evaluation (e.g., by allowing networks to

be simulated over a wide range of sizes).
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1.3 Communities in online social networks

Next, in Chapter 7, we focus on how users form communities in online social net-

works.2. Communities are interesting for a variety of reasons. For example, users in

a community tend to interact frequently, often share interests, and trust each other

to some extent. Therefore, communities are useful, for instance, for guiding infor-

mation dissemination and acquisition, in recommending or introducing people who

would likely benefit from direct interaction, and in expressing access control policies.

Many algorithms for automatically detecting communities in social networks have

been proposed [14,31,58,99,118,131,153,160]. However, these algorithms have never

been tested over real online social networks at scale.

We use detailed data from an online social network to study the effectiveness of

existing approaches for detecting communities. We collect detailed data about the

members of a university in the Facebook social network [49] and analyze the structure

of communities in our data. We find that users are often members of multiple over-

lapping communities. We then examine whether these multiple communities can be

automatically detected. Most existing algorithms have only been evaluated on non-

social networks, and we find that they do not perform well in detecting the multiple

overlapping communities that exist in current social networks.

We propose and evaluate a new algorithm that can infer memberships of multiple,

2A community is a subset of the users in a social network that is more tightly interconnected

than the overall network [119].
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potentially overlapping communities, when given information about a small subset

of the community members. The algorithm uses the ratio between the number of

links within a community and number of links between the community and the rest

of the network. We demonstrate that the algorithm works well in practice: even if

community membership information is only known for as few as 20% of the users, the

remaining members of the community can be determined with high accuracy.

1.4 Ostra: Leveraging relationships

Finally, we present systems that leverage social networks to solve open systems chal-

lenges. In Chapter 8, we present a system that exploits the the difficulty in es-

tablishing and maintaining relationships in social networks to address the problem

of unwanted communication. Internet-based communication systems such as email,

instant messaging (IM), voice-over-IP (VoIP), online social networks, and content-

sharing sites allow communication at near zero marginal cost to users. Any user

with an inexpensive Internet connection has the potential to reach millions of users.

This property has democratized content publication: anyone can publish content,

and anyone interested in the content can obtain it. Unfortunately, the same property

can be abused for the purpose of unsolicited marketing, propaganda, or disruption of

legitimate communication.

We describe a method that exploits existing relationships among users in an on-

line social network to impose a cost on the senders of unwanted communication. Our
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system, Ostra, (i) relies on existing social networks to connect senders and receivers

via chains of pairwise relationships; (ii) uses a pairwise, link-based credit scheme that

imposes a cost on senders of unwanted communication without requiring sender au-

thentication or global identities; and (iii) relies on feedback from receivers to classify

unwanted communication. Ostra ensures that unwanted communication strains the

sender’s relationships, even if the sender has no direct relationship with the ultimate

recipient of the communication. A user who continues to send unwanted communica-

tion will eventually lose the ability to communicate. An evaluation of Ostra on traces

from an online social network demonstrate that it can effectively block unwanted

communication.

1.5 Peerspective: Leveraging shared interest

In Chapter 9, we demonstrate how to leverage communities in online social networks

to help users find interesting content. Users increasingly share content, recommen-

dations, opinions, and ratings using online social networks. However, the growing

number of users and the increasing variety and volume of shared information on

these sites aggravates two fundamental problems in information sharing: privacy and

relevance. Since users are often sharing personal information, privacy and access

control is critical. Additionally, since the volume of shared content is growing at an

enormous rate, finding relevant information is becoming increasingly difficult. We

argue that communities are an important concept that can offer a solution to this
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growing dilemma.

Most online social networks today allow only very coarse-grained content sharing

policies: users typically have the options of sharing content with (subsets of) their

direct friends or with everyone. Communities can provide a natural middle ground,

allowing convenient sharing among groups of users who do not necessarily know each

other but who are close together in the social network. Also, communities often

represent sets of users with common interests, a fact that can be naturally leveraged

by systems to provide information that is relevant at a local, rather than global,

scope.

Using empirical data from an online social network and from a system deployment,

we demonstrate the potential for using communities in online social networks. We

have built and deployed PeerSpective, a system that leverages communities in a so-

cial network in order to aid Web search. PeerSpective automatically indexes browsed

pages and transparently inserts relevant pages viewed by friends into Web search re-

sults. The results are aggregated over the community and presented alongside the

normal search results. Using data from a PeerSpective deployment, we demonstrate

that communities represent groups of users with shared interests, and that PeerSpec-

tive provides a measurable improvement to Web search.

Finally, Chapter 10 presents concluding remarks, discusses the implications of our

work, and describes future research directions.
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Chapter 2

Background

In this chapter, we first give an overview of online social networks, describing their

characteristics, the reasons behind the growth in their popularity, and the range of

user interactions they allow. Then, we describe applications of online social net-

works, motivating why understanding their structure and properties is a necessary

step to building future applications. Finally, we provide background on metrics for

the analysis for complex graphs.

2.1 What are online social networks?

We begin by defining online social networks, providing a brief history of their growth

in popularity, and detail the mechanisms that today’s online social networks provide

for users to connect and share content.

2.1.1 Definition and purpose

For the purposes of this thesis, we define an online social network to be a system

where (a) users are first class entities with a semi-public profile, (b) users can create

explicit links to other users or content items, and (c) users can navigate the social

network by browsing the links and profiles of other users. This definition is consistent
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with that used in previous studies [38].

Online social networks serve a number of purposes, but three primary roles stand

out as common across all sites. First, online social networks are used to maintain

and strengthen existing social ties, or make new social connections. The sites allow

users to “articulate and make visible their social networks”, thereby “communicating

with people who are already a part of their extended social network” [38]. Second,

online social networks are used by each member to upload her own content. Note

that the content shared often varies from site to site, and sometimes is only the user’s

profile itself. Third, online social networks are used to find new, interesting content

by filtering, recommending, and organizing the content uploaded by users.

2.1.2 A brief history

We now give a brief history of online social networks. The site Classmates.com [30] is

regarded as the first web site that allowed users to connect to other users. It began in

1995 as a site for users to reconnect with previous classmates and currently it has over

40 million registered users. However, Classmates.com did not allow users to create

links to other users; rather, it allowed users to link to each other only via schools

they had attended. In 1997, the site SixDegrees.com [145] was created, which was the

first social networking site that allowed users to create links directly to other users.

As such, SixDegrees.com is the first site that meets the definition of an online social

network from above.
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Online social networks began to grow in popularity as more users became con-

nected to the Internet. In the early 2000s, a number of general-purpose sites for

finding friends were established, the most notable of which is Friendster. Friendster

was focused on allowing friends-of-friends to meet, beginning as a rival to the online

dating site Match.com. Other, similar sites created in the same timeframe include

CyWorld [34], Ryze [140], and LinkedIn [95].

In 2003, MySpace [111] was created as an alternative to Friendster and the others.

MySpace allowed users to heavily customize the appearance of their profile, which

proved very popular with users, causing MySpace to quickly become the largest online

social network. As of this writing, MySpace has 247 million user accounts, over twice

as many as the second most popular network, Facebook. For a more complete history

and analysis of the evolution of online social networks, we refer the reader to the

numerous papers by boyd [35, 36, 38, 39].

With the rise in popularity of online social networks, many other types of sites

began to include social networking features. Examples include multimedia content

sharing sites (Flickr [52], YouTube [167], and Zoomr [174]), blogging sites (Live-

Journal [97] and BlogSpot [20]), professional networking sites (LinkedIn [95] and

Ryze [140]), and news aggregation sites (Digg [41], Reddit [132], and del.icio.us [40]).

All of these sites have different goals but employ the common strategy of exploiting

the social network to improve their sites. The list above is not meant to be exhaus-

tive, as new sites are being created regularly. For a more complete and up-to-date list
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of the notable online social networking sites, we refer the reader to Wikipedia [96].

The sociological aspects behind the rapid growth and adoption of social networking

sites are also the subject of much scholarship. One of the primary reasons that has

been noted for popularity of social networking sites is their user-centric nature. The

content that is shared on social networking sites is often information about the users

themselves, such as their status, photos, and so forth. For more details, we refer the

reader to the work by boyd [37].

2.1.3 Mechanisms and policies

We now give a brief overview of the mechanisms and policies that most online social

networks provide.

Users

Full participation in online social networks requires users to register a (pseudo) iden-

tity1 with the network, though some sites do allow browsing public data without

explicit sign-on. Users may volunteer information about themselves (e.g., their birth-

day, place of residence, interests, etc.), all of which constitutes the user’s profile.

The social network itself is composed of links between users. Some sites allow

users to link to any other user (without consent from the link recipient), while other

1In the rest of this thesis, we use the term “user” to denote a single unique identity in a social

network. Clearly, a single human may create multiple identities, and may even create links between

their own identities. We consider each of these identities as separate users.
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sites follow a two-phase procedure that only allows a link to be established when both

parties agree. Certain sites, such as Flickr, have social networks with directed links

(meaning a link from A to B does not imply the presence of a reverse link), whereas

others, such as Orkut, have social networks with undirected links.

Users link to other users for numerous reasons. The target of a link may be a

real-world acquaintance, a business contact, a virtual acquaintance, someone who

shares the same interests, someone who uploads interesting content, and so on. In

fact, some users even consider the acquisition of many links to be a goal in itself [36].

When compared to links in the Web, links in online social networks combine the

functionality of both hyperlinks and bookmarks.

A user’s links, along with her profile, are usually visible to those who visit the

user’s account. Thus, users are able to navigate the social network by following user-

to-user links, browsing the profile information and any contributed content of visited

users as they go. Certain sites, including LinkedIn, only allow browsing of profiles

within the user’s own neighborhood (i.e., a user can only view other users that are

within two hops), while other sites, such as Flickr, allow users to view any other user

in the system.

Groups

Most sites also enable users to create special interest groups, which are akin to

Usenet [127] newsgroups. Users can post messages to groups (visible to all group
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members) and even upload shared content to the group. Certain groups are moder-

ated, and admission to the group is controlled by a single group maintainer, while

other groups are open for any member to join. All sites today require explicit group

declaration by users; users must manually create groups, appoint administrators (if

necessary), and declare which groups they are a member of. Certain sites (such as

Facebook) create a few pre-populated groups based on the domain of users’ email

addresses, but the majority of groups do not fall into this category.

The primary use of groups in today’s networks is to either express access control

policies or to provide a forum for shared content. Examples of the former include sites

like Facebook, which, by default, allows only users located in the same geographic

location or organization to view each other’s profiles. Examples of the latter are more

common, including Flickr’s shared photo groups and Orkut’s communities feature.

Content

Once an identity is created, users of content-sharing sites can upload content onto

their account. Many such sites enable users to mark content as public (visible to

anyone) or private (visible only to their immediate “friends”), and to tag content with

labels. Many sites, such as YouTube, allow users to upload an unlimited amount of

content, while other sites, such as Flickr, require that users either pay a subscription

fee or be subject to an upload limit. All of the content uploaded by a given user is

listed in the user’s profile, allowing other users to browse through the social network



17

to discover new content. Typically, the content is automatically indexed, and, if

publicly available, made accessible via a textual search. An example is Flickr’s photo

search, which allows users to locate photos by searching based on tags and comments.

Once on the site, users can submit their uploaded content into groups that they

are a member of. The privacy settings often allow for the content to be accessible only

by group members. Moreover, the sites generally allow users to browse the content

uploaded to groups they are members of.

Users are also often allowed to create favorite lists, which link to a user’s favorite

content uploaded by other users. These favorite lists are also generally publicly ac-

cessible from the user’s profile page. Similarly, most sites allow users to comment on

pieces of content, much like a Usenet posting, and the comments appear alongside

the piece of content itself.

Finally, many sites contain most popular content lists, which contain the most

popular content items (in terms of the number of views, comments, or ratings) that

have been recently uploaded. Users can browse these lists to find new content to

view. A notable example is YouTube’s top-100 lists, where popularity is based on the

number of views, comments, or favorite-markings a video has recently received.

2.1.4 A new form of information exchange

To underscore how online social networks represent different information distribution

systems relative to systems like the Web, we focus briefly in this section on how con-
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tent is spread in today’s networks. Most of the sites we study are designed for sharing

content: Flickr, YouTube, and LiveJournal are used for publishing, organizing, locat-

ing, and distributing photos, videos, and blogs, respectively.

To investigate the role played by the underlying user network in organizing and

locating content, we conducted a simple measurement of how users browse the Flickr

system. We analyzed the HTTP requests going to the flickr.com domain from an

HTTP trace taken at the border routers of Technical University of Munich between

August 17th, 2006 and October 11th, 2006. We found 22,215 photo views from at least

1,056 distinct users. For each of these views, we examined the browser’s clickstream

to determine what action led the user to a given photo.

We found that 17,897 of these views (80.6%) resulted from following links in the

Flickr user graph or from following links between photos within a user’s collection.

In other words, 80.6% of the time, the social network of Flickr users was used in

browsing content. We count these views as being influenced by the social network.

Of the remaining, 1,418 (6.3%) views involved Flickr search facilities. Finally, only

2,900 (13.1%) views followed a link from an external source, such as links from an

external Web site or links received via email. Neither of the latter sets of views

(19.4%) involved the social network.

Thus, our experiment demonstrates that the social network in Flickr plays an

important role in locating content: four out of five photos were located by traversing

the social network links.
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2.2 Why study online social networks?

Online social networking is still very much in its infancy, yet it already forms the basis

for some enormously popular applications. As this paradigm matures, we expect

more sophisticated applications to naturally emerge. It is not inconceivable that

social networking systems will eventually become de-facto portals for both personal

and commercial online interactions. Below, we outline a few of the many potential

applications that could benefit from understanding the structure of and information

flow in these networks. Additionally, we speculate on how the data collected in this

thesis could be relevant to researchers in other disciplines.

2.2.1 Trust

Adjacent users in a social network tend to trust each other more than random pairs

of users in the network. A number of research systems have already been proposed

to exploit this trust. Trust relationships are being used in the PGP web of trust [172]

to eliminate the need for a trusted certificate authority. SybilGuard [169] and Sybil-

Limit [168] uses the social network to mitigate Sybil [44] attacks in distributed sys-

tems, exploiting the fact that real people tend to have a diverse set of social relations.

Re [57] determines the social network distance between the sender and the receiver

of an email to aid SPAM detection. We believe that a deeper understanding of the

underlying topology is an essential first step in the design and analysis of robust trust

and reputation metrics for these systems.
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2.2.2 Shared interest

Adjacent users in a social network also tend to share common interests. Users browse

neighboring regions of their social network because they are likely to find content

that is of interest to them. Systems such as Yahoo My Web [165], Google Co-op [60],

and PeerSpective [104] use social networks to rank Internet search results relative to

the interests of a user’s social network. Using the content viewed and search results

clicked on by members of a social network, these systems to rank the results of the

members’ future searches more accurately.

Clearly, understanding the structure of online social networks, as well as the pro-

cesses that shape them, is important for these applications. For example, efficient

algorithms are needed for inferring the actual degree of shared interest between two

users, or the reliability of a user (as perceived by other users). It is also important

to understand the robustness of such networks to deliberate attempts of manipu-

lation. These topics are beyond the scope of this thesis; however, a fundamental

understanding of online social network structure is likely to be a necessary first step.

2.2.3 Content exchange

The phenomenal popularity of social networking sites like YouTube, Flickr, and MyS-

pace represents a shift in how content is published, located, and distributed on the

Internet. Understanding how content diffuses through these networks and becomes

popular over time is not only of academic interest, but is increasingly important in
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commercial advertising, in political campaigning, and ultimately to society. In fact,

a number of research efforts [42, 43, 66, 72, 137, 158] have proposed viral marketing

campaigns to leverage the word-of-mouth effect. In 2007 alone, $1.2 billion was spent

on advertisement in online social networks worldwide, and this is expected to triple

by 2011 [147]. Understanding how information flows among users of online com-

munities is an important step toward the design and analysis of future information

dissemination systems.

Understanding how information flows in online social networks can also aid design-

ers of current social networking systems. If, for example, one can predict the relative

popularity of newly introduced objects, caching and pre-fetching schemes can be cre-

ated to reduce the latency and bandwidth required by the site. Since many of the

currently popular sites rely primarily on advertising for revenue, reducing distribution

costs for multimedia content is clearly a pressing issue.

Understanding how content flows through social networks also has the potential

to improve search algorithms. By examining the content that users view or mark

as a favorite, sites may be able to suggest other content that may be of interest

to the user. Many have noted [10] that the age of the Internet has enabled much

greater diversity in preferences and tastes; using online social networks appears to be

a natural approach to further discover and refine tastes.

Finally, understanding how content is exchanged in online social networks can

help guide the designers of future systems. Social networks have already proven to be
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useful in a number of different contexts, and we are seeing new sites popping using

social networks to predict music preferences, find potential job applications, and share

content. By understanding the user structure and the properties of information flow,

designers of future systems have a empirical basis for designing and provisioning their

systems.

2.2.4 Other disciplines

As mentioned before, our work has relevance beyond computer systems. To sociolo-

gists, online social networks offer an unprecedented amount of data. These systems

represent the complete evolution of a large, contained online social network, with the

accompanying timeline of every event that occurred within them. Sociologists can

examine this data to validate existing theories of communication, as well as to look

for new forms of communication.

To political scientists and marketing specialists, studying how information flows

through social networks may help improve techniques such as targeted advertising and

viral marketing. Political candidates have already realized the importance of blogs

in recent elections [133]. Similarly, marketing specialists are already experimenting

with paid viral marketing [125] to better promote products and companies. Clearly,

a better understanding of how content is currently being exchanged in these systems

holds the potential to improve these approaches.
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2.3 How do we analyze complex networks?

We now discuss the various ways of analyzing and characterizing the shape of large

networks, and conclude with a discussion of the various classes of graphs that have

been observed in the real world.

2.3.1 Preliminaries

We assume that we have a network which can be viewed as a graph G = (V, E). In

the context of an online social network, for example, the vertices represent users and

the edges represent relationships among users. The links in the graph can either be

directed, meaning each link is sourced at one node and terminated at another node, or

undirected, meaning each link is between two nodes without a source and destination.

Consistent with previous work, we define a node i’s degree, denoted by di, to be

the number of links the node has to other nodes. For directed networks, we distin-

guish between indegree (the number of incoming links) and outdegree (the number of

outgoing links). Also for directed networks, we consider the level of symmetry in the

network to be the fraction of links that have a corresponding reverse link.

2.3.2 Radius and diameter

We now discuss the radius and diameter of a graph, which represents how far away

nodes are from each other in the network. First, the eccentricity of a node v is the

maximal shortest path distance between v and any other node. The radius of a graph
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is then the minimum eccentricity across all vertices, and the diameter is the maximum

eccentricity across all vertices. Thus, the radius represents the maximal distance from

the most “central” node in the graph to all other nodes, and the diameter represents

the maximal distance from the least “central” node in the graph to all other nodes.

Due to the computational complexity associated with determining the actual ra-

dius and diameter, the radius and diameter of a graph is often estimated by calculating

the eccentricity of a large random sample of nodes in the network. In such cases, the

diameter should be viewed as a lower bound of the true diameter, and the radius as

an upper bound of the true radius.

2.3.3 Degree distribution

The degree distribution of a graph is a function P (k) which describes the fraction

of the network’s nodes which have degree k. The degree distribution describes how

the links in the graph are distributed among the nodes. For example, the degree

distribution of a graph with randomly placed edges among n nodes follows a binomial

distribution of

P (k) =

(

n − 1

k

)

pk(1 − p)n−1−k (2.1)

where p represents the probability that any two nodes are connected. Most real-world

networks have been shown to deviate from random graphs, and instead, have a bias

whereby a few high-degree nodes hold a large fraction of the links.
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2.3.4 Joint degree distribution

In addition to the degree distribution P (k), we also focus on the joint degree distri-

bution (JDD) represented as J(k, m). The function J(k, m) represents what fraction

of the links in the graph are between nodes of degree k and degree m. In the case of

a directed network, J(k, m) represents the fraction of links that are from a node with

outdegree k and to a node with indegree m. Thus, the JDD represents how often

nodes of different degrees connect to each other. This property is also referred to as

the 2K-distribution [101] or the mixing patterns [116].

The JDD provides many insights into the structural properties of networks. For

example, networks where high-degree nodes tend to connect to other high-degree

nodes are more likely to be subject to epidemics, as a single infected high-degree

node will quickly infect other high-degree nodes. On the other hand, networks where

high-degree nodes tend to connect to low-degree nodes show the opposite behavior;

a single infected high-degree node will not spread an epidemic very fast.

The JDD can be approximated by the degree correlation function knn, which is a

mapping between outdegree and the average indegree of all nodes connected to nodes

of that outdegree. Clearly, an increasing knn indicates a tendency of higher-degree

nodes to connect to other high-degree nodes; a decreasing knn represents the opposite

trend.
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2.3.5 Scale-free behavior

The scale-free metric s(G) [91] of a graph is a value calculated directly from the joint

degree distribution of a graph. The scale-free metric ranges between 0 and 1, and

measures the extent to which the graph has a hub-like core. To define the s(G), we

first define s′(G) as

s′(G) =
∑

(i,j)∈E

didj (2.2)

Then, we define the scale-free metric s(G) as

s(G) =
s′(G)

s′max

(2.3)

where s′max represents the maximum value of s′ over all graphs with the same degree

distribution of G. A high scale-free metric means that high-degree nodes tend to

connect to other high-degree nodes, while a low scale-free metric means that high-

degree nodes tend to connect to low-degree nodes.

2.3.6 Assortativity

The scale-free metric is related to the assortativity coefficient r, which is a measure

of the likelihood for nodes to connect to other nodes with similar degrees. The

assortativity is defined as the Pearson correlation coefficient between the degrees of

all pairs of nodes connected by an edge. Thus, the assortativity coefficient ranges

between -1 and 1; a high assortativity coefficient means that nodes tend to connect to

nodes of similar degree, while a negative coefficient means that nodes likely connect

to nodes with very different degree from their own.
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2.3.7 Clustering coefficient

The clustering coefficient of a node i, denoted by c(i), is defined as the number of

directed links that exist between the node’s neighbors, divided by the number of

possible directed links that could exist between the node’s neighbors. Thus, if a node

i’s neighbors have n directed links between them, then the clustering coefficient of i

is defined as

c(i) =
n

di(di − 1)
(2.4)

The clustering coefficient of a graph is the average clustering coefficient of all its

nodes, and we denote it as C(G), or

C(G) =

∑

v∈V c(v)

|V |
(2.5)

Thus, the clustering coefficient of a graph ranges between 0 and 1, with higher values

representing a higher degree of “cliquishness” between the nodes. In particular, a

graph with clustering coefficient of 0 contains no “triangles” of connected nodes,

whereas a graph with clustering coefficient of 1 is a perfect clique.

2.3.8 Betweenness centrality

The betweenness centrality B of an edge, originally proposed by Girvan and New-

man [119], is defined as the number of shortest paths between all pairs of vertices

in the graph that cross the edge. If a pair of vertices have multiple shortest paths

between them, then each path is assigned a weight such that the sum over all paths
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is one. Thus, betweenness centrality for an edge e can be expressed as

B(e) =
∑

u∈V,v∈V

σe(u, v)

σ(u, v)
(2.6)

where σ(u, v) represents the number of shortest paths between u and v, and σe(u, v)

represents the number of shortest paths between u and v that include e. The be-

tweenness centrality of an edge can be viewed as a metric for the importance of an

edge in a graph, as edges with a higher betweenness centrality fall on more shortest

paths, and are therefore more important for the structure of the graph.

2.3.9 Modularity

When examining communities in networks, one often requires an objective metric to

evaluate how “good” a particular division of the network into communities is. One

such metric is the the modularity measure proposed by Newman [118]. Consider a

community structure of k communities. Let e be a symmetric k × k matrix, whose

element eij is the fraction of edges in the network that connect vertices in community

i to community j by considering all the edges in the original network. Also, we define

ai =
∑

j eij be the fraction of edges that touch vertices in community i. Then, the

trace of the matrix Tr e =
∑

i eii gives the fraction of edges in the network within

the same community. Hence, modularity is defined as

Q =
∑

i

(eii − a2
i ) = Tr e − ||e2|| (2.7)

where ||y|| indicates the sum of elements of matrix y. Modularity is then a measure

of the fraction of intra-community edges minus the expected value of the same quan-
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tity in a network with the same community divisions, but with edges placed without

regard for communities. Modularity therefore ranges from -1 to 1, with 0 representing

no more community structure than would be expected in a random graph, and signif-

icantly positive values representing the presence of community structure. In practice,

a modularity over 0.3 or higher is observed in real-world networks with significant

community structure [118].

2.3.10 Connected components

Finally, we discuss the notion of connected components in graphs. For an undirected

graph, a connected component as a subset of the nodes such that there is a path in

the network between all pairs of nodes in the set. For a directed graph, we distin-

guish between a strongly connected component and a weakly connected component. A

strongly connected component (SCC) is defined as a set of nodes such that there is

a path in the network between all pairs of nodes in the set. In contrast, a weakly

connected component (WCC) is defined as a set of nodes such that there is a path

in the network between all pairs of nodes in set if the all links in the network were

viewed as undirected.

Studies of real-world networks, such as the Web and the Internet topology, has

shown that there often exists a single, dominating SCC which is orders of magnitude

larger than all other SCCs [23]. In this thesis, we refer to this dominating component

as the dominant SCC .
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2.3.11 Classes of studied networks

Now, we detail classes of complex networks that have been observed in the real world.

For more detail on these networks, we refer the reader to the survey by Newman [117].

Random networks have been heavily studied, starting with the seminal paper by

Erdös and Réyni [48]. These graphs are usually constructed by randomly adding

links to a static set of nodes. Researchers have shown that random graphs tend to

exhibit very short average path lengths between any two nodes [78]. More recent

work on random graphs has provided mechanisms to construct graphs with specified

degree distributions [108] and characterized the size of the large strongly connected

component [109].

Power-law networks are networks where the probability that a node has degree

k is proportional to k−α, for large k and α > 1. Thus, the degree distribution of

a power-law network follows an exponential decay. The parameter α is called the

power-law coefficient. Researchers have shown many real-world networks are power-

law networks, including Internet topologies [51], the Web [15,83], social networks [4],

neural networks [22], and power grids [128].

Scale-free networks are a class of power-law networks where the high-degree nodes

tend to be connected to other high-degree nodes. Scale-free graphs are discussed in

detail by Li et al. [91], and are defined as networks with a significant scale-free metric

s(G).
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Small-world networks have a small diameter and exhibit a high clustering coef-

ficient. Studies have shown that the Web [7, 23], scientific collaboration [115], film

actors [9], and general social networks [4] have small-world properties. Kleinberg [76]

proposed a model to explain the small-world phenomenon in social networks, and

also examined navigability in these networks [75]. The online social networks ex-

amined in this thesis demonstrate small-world properties much like their real-world

counterparts.

2.3.12 Preferential attachment

Preferential attachment [15], also known as cumulative advantage [170] or the rich

get richer phenomenon, is a property of link formation in a graph. In short, prefer-

ential attachment says that the likelihood of a node being attached to a new link is

in proportion to the node’s degree. Preferential attachment in a given network can

be characterized as linear, if the probability of a node receiving a link is in linear

proportion to the node’s degree, or sub-linear, if the probability of a node receiving

a link is, for example, in proportion to the log of the node’s degree. Under cer-

tain circumstances, preferential attachment has been shown to result in power-law

networks [15].
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Chapter 3

Related Work

In this chapter, we describe prior work related to the topics presented in this thesis.

As this thesis covers a number of different topics, the related work has been grouped

into sections detailing (a) work that examines the static structural properties of com-

plex networks, (b) work that examines how complex networks evolve, (c) work that

identifies and uses communities in online social networks, (d) work that tries to solve

the problem of unwanted communication, and (e) work that tries to personalize web

search.

3.1 Complex network structure

We begin by examining work that characterizes the structure of static snapshots

of large scale networks. In following chapters, we examine the static snapshots of

multiple online social networks. In order to ground our analysis, we compare our

results to those from other large-scale complex networks such as the Web and the

Internet. Thus, we describe related work that studies these networks after describing

work that studies social networks.
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3.1.1 Social networks

Sociologists have studied many of the properties of offline social networks, and we only

briefly describe a few of the relevant findings. For a more complete overview of offline

social networks and associated analysis techniques, we refer the reader to the book

by Wasserman [157]. Milgram [102] showed that the average path length between

two Americans was six hops, demonstrating that social networks can be classified

as small-world. Pool and Kochen [129] provided an analysis of how the small-world

property of social networks affects contacts and influence. The influential paper by

Granovetter [63] argued that a social network can be partitioned into ‘strong’ and

‘weak’ ties, and that the strong ties are tightly clustered, while the weak ties represent

longer-distance relationships. We were able to verify that online social networks have

similar properties, with short path lengths and strong clusters connected by long-

distance links.

As online social networks gained popularity, researchers have begun to investigate

their properties. Adamic et al. [4] studied an early online social network at Stanford

University, and found that the network has small-world characteristics as well as a

significant clustering coefficient. Liben-Nowell et al. [94] found a strong correlation

between friendship and the geographic location of users by using data from Live-

Journal. Kumar et al. [82] examined two online social networks from Yahoo! and

found that both possessed a dominant SCC. Girvan and Newman observed that users

in online social networks tend to form tightly knit groups [58], evidenced by a high
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clustering coefficient. We were able to verify all of these properties on multiple sites

and on a much larger scale in our study.

In more recent work, Ahn et al. [6] analyzed complete data from the large South

Korean social networking site Cyworld [34], along with data from small sample crawls

of MySpace and Orkut. The authors obtained data directly from CyWorld operators,

and the volume of available data allows the authors to conduct an in-depth study of

that site using some of the same metrics that we use in this thesis. The comparison

with different networks, on the other hand, is limited by the small crawled data

samples of MySpace and Orkut. Our study is largely complementary: the data

available to us for any one site is less detailed, but we are able to compare large

crawled data sets from multiple sites.

Finally, researchers have also examined how the activity network, or the pattern of

interactions between users, compares with the social network. In particular, Wilson

et al. [163] studied the activity network of samples of the Facebook network and found

that, in contrast to the social network, the activity network is much more sparse and

has a significantly lower maximal degree. Chun et al. [29] found similar properties

for the interaction network in CyWorld. In our work, we focus only on the social

network, but our approach and methods could be naturally applied to the activity

network as well.
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3.1.2 Other information networks

A long thread of research examines the structure of information networks like the

graph of Web pages and the Internet’s routing topology. A prominent study of Web

structure [23] showed that the Web has a “bow-tie” shape, consisting of a dominant

SCC, and groups of nodes that can either reach the SCC or can be reached from the

SCC. We show that the social networks share a similar dominant SCC, but that this

component is relatively much larger than that of the Web. Faloutsos et al. [51] found

that the degree distribution of the Internet’s routing topology follows a power-law,

and Siganos et al. [144] demonstrated that the high-level structure of the Internet

resembles a “jellyfish”.

Kleinberg [77] showed that high-degree nodes can be observed in the Web that

function either as hubs (pages containing useful references on a subject) or authorities

(pages containing relevant information on a subject). Kleinberg also presented an

algorithm [74], which, when given a graph of Web pages, can infer pages function

as hubs and as authorities. The well-known PageRank algorithm [122] uses the Web

structure to determine pages that are considered reputable. Our results indicate

that in online social networks, the high degree of link symmetry may prevent such

algorithms from working, since the hubs are automatically also the authorities.
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3.2 Complex network growth

In addition to the study of the static structure of various information networks, re-

searchers have also examined the evolution of networks, looking at the processes by

which links are formed and removed. Consistent with previous work, we refer to these

processes as growth models. In our work, we collect detailed data on the growth of

online social networks. Thus, in this section, we describe related work on various

growth models, and detail the extent to which they have been validated on real data.

3.2.1 Growth models

Growth models for complex networks can be partitioned into structural models (i.e.,

models that only take into account the structure of the network to predict link forma-

tion or removal) and explanatory models (i.e., models that consider external factors,

such as human factors in online social networks, to predict links). We describe each

of these types of models below.

Structural growth models

Researchers sought to explain the intriguing similarity in the high-level structural

properties across networks of very different scales and types by hypothesizing that

the networks are the result of a few common structural growth processes at work.

Many models of these processes have been proposed and analyzed to explain the

structure of complex networks.
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The well-known Barabási-Albert (BA) model [15], based on preferential attach-

ment, has been shown to result in networks with power-law degree distributions.

In the BA model, new links are attached to nodes using a probability distribution

weighted by node degree, resulting in linear preferential attachment. Many extensions

to the BA model have been proposed (e.g., to add a tunable level of clustering [67]).

We are able to verify that the growth of online social networks follows linear prefer-

ential attachment, but not in the way that the BA model proposes.

Another class of models that produce power-law networks are based on local rules,

such as the random walk model [142,154], where nodes select new neighbors by taking

random walks; the common neighbors model [114], where nodes select new neighbors

by picking nodes with whom they share many friends in common; and the finite

memory model [79], where nodes eventually become inactive and stop receiving any

new links. All of these models exhibit preferential attachment (since high-degree

nodes end up being selected more often), but with higher levels of local clustering

than the BA model [154]. We demonstrate that, while these models are more accurate

at predicting the destination of new links in our data than the BA model, the overall

accuracy of these models remains very low. For a more detailed treatment all of these

models and others, we refer the reader to a paper by Mitzenmacher [106].



38

Explanatory growth models

Some recent studies, particularly on online social networks, have proposed explana-

tory models of the network growth. Unlike structural growth models, which try to

model growth solely as a function of the network structure, explanatory models seek to

account for the underlying sociological factors that cause the links to be established.

For example, an explanatory growth model for Flickr, a photo-sharing social network,

could be based on an understanding of how users behave when sharing pictures.

Examples of work on explanatory growth models include Kumar [82], who divided

users into ones who are active and passive, and presented a model describing their

behavior in an online social network. Jin et al. [70] presented a model of social net-

works based on known human interactions. Backstrom et al. [12] looked at snapshots

of group membership in LiveJournal, and presented a model for the growth of user

groups over time based on understandings of peer pressure. Finally, Chang et al. [27]

proposed a model for the growth in connectivity of the Internet topology, modeling

the decision processes of the administrators of autonomous systems.

Compared to structural growth models, explanatory models are more detailed,

but they also tend to be specific to the network being investigated. For example, the

reasons why autonomous systems connect to each other in the Internet topology are

very different from the reasons why users in Flickr connect to each other. By being

agnostic to these factors, structural growth models are inherently less accurate. But,

they are far more general, and can be compared across different types of networks.
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In this thesis, we focus only on structural growth models.

Validation of growth models

It is important to note here that both structural and explanatory growth models are,

by and large, intuitive models that can explain the observed structural properties of

the networks. But, they have not been significantly validated using empirical data.

Mitzenmacher [107] poses this as one of the biggest challenges facing the future of

power-law research. One of the contributions of this thesis lies in collecting data that

can be used to determine how well these processes predict what actually occurs in

different real-world networks at scale.

3.2.2 Observations of network growth

With the growth in popularity of online social networks, a few studies have examined

the properties of the networks over time. We briefly describe these studies below.

A few studies have looked at how links are formed in social networks. Kossinets

and Watts [80] used an inferred social network from an email trace to show that

new links in the network are more likely to be established between nodes close to

each other. Nowell et al. [93] investigated co-authorship networks in physics to test

how well different graph proximity metrics can predict future collaborations. New-

man [114] and Jeong et al. [69] examined the properties of scientific collaboration

networks and found evidence of preferential attachment. Peltomäki and Alava [126]

examined a scientific collaboration network and a movie-actor network and found
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evidence of sub-linear preferential attachment.

Our work shares similar goals and methodology as the above studies. However, the

data sets we use are orders of magnitude larger than the ones used before. Moreover,

our data allows us to analyze network growth over a large number of samples. We

analyze daily snapshots of Flickr and YouTube networks, and weekly snapshots of the

Internet topology. For Wikipedia, we have sufficient data to create a snapshot of the

network at the precise second a new link is established. Since the growth models rely

solely on the current network structure to predict new link formation, having frequent

snapshots of the network is crucial to validating the models with high accuracy.

Researchers have also studied the high-level properties of graph evolution, looking

for evolution trends at the global level. For instance, Leskovec et al. [87] examined

the evolution of a number of real-world graphs, including collaboration networks and

recommendation networks. They found that the graphs tend to densify, and that

the average path length tends to shrink (instead of growing in proportion to the

number of nodes). Additionally, Kumar et al. [81] observed the early evolution of the

blogosphere, and found that it is rapidly increasing in both scale and connectedness.

This line of work is largely complementary to our work, as we focus on the local link

formation phenomena which might lead to these global observations.
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3.3 Detecting communities

We now turn our attention to the detection of communities in online social networks.

A community is a subset of the users in a social network that is more tightly in-

terconnected than the overall network [119]. Thus, all of the work described in this

section tries to detect densely connected components of graphs. At a high level, the

approaches can be divided into global approaches, which assume knowledge of the

entire graph, or local approaches, which only assume detailed knowledge of a region

of the network. After briefly describing how communities were detected classically in

sociology, we describe the global and local approaches. Then, we describe empirical

studies of social networks that have looked for the presence of communities.

3.3.1 Classical community detection

Classical community detection in sociology took the approach of partitioning the ver-

tices in a social network into different communities while minimizing the number of

edges between communities. Within this approach, there are two main algorithms:

spectral bisection [130] and the Kernighan-Lin algorithm [73]. Both algorithms par-

tition the graph into the best two communities possible, and then further subdivide

those two until reaching the user-specified number of communities. However, both

algorithms require the user to specify the sizes of the two communities initially, as

well as the final number of communities desired.
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3.3.2 Global community detection

One of the first community detection algorithms that did not assume pre-existing

knowledge of the community structure was proposed by Girvan and Newman [119]. In

short, their algorithm works by calculating the “most important” link in the network,

and then removing it. The algorithm then repeats this step until the social network

graph becomes partitioned, at which point the various partitions are considered as

communities. Continuing to run the algorithm over the various partitions will produce

even finer communities, until all of the links are removed from the network.

From the above description, it is clear that the selection of the most important

link is integral to the functioning of the algorithm. A good metric of importance can

quickly partition the graph into its various communities, while a bad metric can simply

disconnect nodes one-by-one and produce degenerate partitions. Girvan and Newman

suggested using the metric of betweenness centrality. The intuition behind Girvan and

Newman’s algorithm is simple: if we assume that the social network is divided into

densely connected communities, the betweenness centrality metric looks for links that

bridge communities. Since communities are, by definition, more dense than the graph

as a whole, these bridging links will naturally have a higher betweenness centrality.

Once they are removed from the graph, the underlying community structure emerges.

Newman [118] later proposed a faster, alternate approach, based on the greedy

optimization of modularity. The algorithm starts with each vertex in a separate

community, and merges pairs of communities, choosing at each stage the pair that
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would yield the highest increase or smallest decrease in modularity. Clauset et al. [32]

proposed a faster variant of this algorithm by further optimizing the operations with

the use of more efficient data structures. These improvements in speed are important,

as the running time of the original algorithm prohibited it from being used on graphs

with more than a few thousand links.

Tyler et al. [153] presented a variant of the algorithm of Girvan and Newman,

which improved the speed of the algorithm at the cost of accuracy. Instead of calcu-

lating the total betweenness centrality score by considering all paths starting at every

vertex in the graph, Tyler et al. suggest that the betweenness centrality be calculated

by summing over only a subset of the vertices, thereby obtaining a partial between-

ness centrality score for all edges. The algorithm is run multiple times, yielding

multiple community partitionings and are then aggregated into a single community

partitioning using the technique proposed by Wilkinson et al. [161].

Radicchi et al. [131] proposed another algorithm based the approach of Girvan

and Newman. It uses a local approximation to select the edges to be removed, which

can be calculated quickly and, hence, runs faster. For each edge, it approximates the

betweenness centrality by the number of loops of length three (i.e., triangles) that

include the edge. Inter-community edges are unlikely to belong to many triangles,

because they require another edge between the communities to complete the loop.

Other approaches have looked at finding multiple, overlapping community struc-

tures from a global perspective. This is in contrast to the previously discussed ap-
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proaches, which were only concerned with finding the best way to partition the nodes

into single, non-overlapping set of communities. The overlapping approaches include

work by Palla et al. [123], which used k-cliques to find overlapping communities at

different scales. Baumes et al. [16, 17] proposed a similar approach for finding over-

lapping communities by first looking for dense collections of nodes in the graph. Du

et al. [46] presented an algorithm to detect communities in large-scale social networks

by considering the overlapping nature of communities. Finally, Li et al. [92] proposed

a separate approach for overlapping community detection based on triangle formation

and clustering based on text similarity.

3.3.3 Local community detection

One potential downside of the global approaches to community detection is that the

structure of the entire graph must be known; this is often prohibitively expensive

(as many real-world graphs are extremely large) or hard to obtain (for example, the

graph of Web pages). As an alternative, a number of researchers have looked at

local approaches to detecting communities, which use only local knowledge to build

a community around a set of source nodes. In contrast with the global approaches,

local approaches have the potential to be significantly more scalable and applicable

to much larger graphs, as well as graphs which are not completely visible due to

privacy restrictions. Moreover, local approaches to community detection also hold

the potential to detect multiple community structures – global approaches assign each
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node to exactly one community, even if multiple such structures exist. Finally, local

approaches allow for natural decentralization, as the computation can be trivially

divided up and distributed.

Clauset [31] proposed one of the first local approaches to community detection,

which was based on the greedy construction of a community around a source node.

The algorithm creates a community by adding vertices one-by-one, choosing the vertex

at each step that maximizes the ratio of intra-community edges to inter-community

edges for the nodes on the “fringe” of the community. Thus, this algorithm tries to

create a strong community by greedily picking nodes that have many links inside the

community. Bagrow et al. [14] proposed an alternative algorithm, which adds all of the

k-hop vertices at each step, until the ratio of inter-community to intra-community

links falls below a threshold. Both of these were shown to detect communities in

synthetic graphs, as well as a real-world product recommendation network. Recently,

Wakita et al. [155] proposed a modification to the Clauset algorithm, which is capable

of identifying communities in social networks with up to 5 million users. However,

their work does not provide any validation of the community structure inferred from

the network.

Additionally, two new local community detection algorithms have been proposed

to improve the speed and performance of community detection. Luo et al. [99] pro-

posed an algorithm similar to Clauset’s, with the exception that it iteratively adds

and removes nodes, continuing until adding or removing any single vertex would not
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result in a better community. Bagrow [13] evaluated the performance of the various

algorithms (and one additional newly proposed one), and found that the algorithm

of Leo et al. performed the best on synthetically generated graphs.

It is important to note that none of these algorithms has been validated on a

large-scale social network, primarily due to the lack of data availability. Typically, the

algorithms are evaluated on synthetically generated graphs, product recommendation

networks, or very small social networks such as Zachary’s karate club [171], consisting

of 34 members. Thus, it is not known whether they can detect communities in online

social networks. In this thesis, we demonstrate the limitations of these approaches on

data taken from an online social network, and present a new algorithm that addresses

these limitations.

3.3.4 Observations of communities

A few studies have examined the community structures that exist in online social

networks. The most notable of these is the work by Nazir et al. [113], which presented

a large-scale measurement study of usage characteristics of applications in Facebook.

They launched a few Facebook applications and, using the data collected from these

applications, they characterized the workload, the structure of user interactions, and

the existence of communities in the network. Their results, however, do not paint a

complete picture of the Facebook network as they are only able to collect data on

users who installed one of their applications. In contrast, we are able to collect data
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on the majority of members of multiple Facebook networks, and do not require users

to install any applications.

3.4 Preventing unwanted communication

Later in this thesis, we present Ostra, a system that leverages the difficulty in estab-

lishing and maintaining relationships in social networks to prevent malicious users

from sending unwanted communication. Thus, we now describe related approaches,

encompassing work that aims to prevent unwanted communication and work that

leverages relationships in online social networks for other purposes.

Unwanted communication has long been a problem in the form of email spam, and

many strategies have been proposed to deal with it. However, the problem increas-

ingly afflicts other communication media such as IM, VoIP, and social networking

and content-sharing sites. At a high level, there are three approaches for preventing

unwanted communication in unicast systems. First, one can examine the content of

the communication itself, looking for messages that are likely to be unwanted. Sec-

ond, one can look at the reputation of the sender, focusing on users who send lots

of unwanted communication. Third, one can impose a cost on the sender, with the

hope that this cost will discourage the sending of unwanted messages. Additionally,

in systems that allow multiple recipients, one can also look at allowing recipients to

vote on whether content is wanted or not. These four approaches are discussed in

detail below.



48

3.4.1 Content-based filtering

The most widespread approach to fighting unwanted communication is content-based

filtering, where recipients have software that uses heuristics to automatically classify

communication based on its contents. Popular examples are email filtering systems

like SpamAssassin [148] and dSPAM [45]. Since content-based filters are installed at

the email receiver, they lend themselves to customization and incremental deploy-

ment. Today’s state-of-the-art filters are effective at blocking most spam, with some

reporting correct classification of over 99% of messages [45]. Content-based filters are

also used for other types of unwanted communication, such as blog spam [103] and

network-based security attacks [84].

Content-based filtering, however, is subject to both false positives and false nega-

tives. False negatives — that is, when unwanted communication is classified as wanted

— are a mere inconvenience. False positives [5] are a much more serious concern, be-

cause relevant messages are marked as unwanted and thus may not be received [65].

Moreover, there is a continual arms race [64] between spammers and filter developers,

because the cognitive and visual capabilities of humans allow spammers to encode

their message in a way that users can recognize but filtering programs have difficulty

detecting. When early spam filters looked for certain keywords and text patterns in

messages, spammers started to misspell telltale words and include random text to

escape detection. Nowadays, spammers embed text in images, requiring spam filters

to use optical character recognition (OCR) components.
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3.4.2 Originator-based filtering

Another approach for eliminating unwanted communication is to classify content

based on the originator’s history and reputation. One technique is whitelisting, where

each user specifies a list of users who they are willing to receive content from.

Whitelisting is commonly deployed in IM applications such as iChat and AIM,

in VoIP systems such as Skype, and in social networking sites such as LinkedIn. In

these cases, users have to be on each other’s whitelists (i.e., their lists of contacts)

to be able to exchange messages. To get on each other’s whitelists, two users must

exchange a special invitation. If the invitation is accepted, the two parties are added

to each other’s whitelists. If the invitation is rejected, then the inviter is added to

the invitee’s blacklist, which prevents the inviter from contacting the invitee again.

Re [57] extends whitelists to automatically and securely include friends of friends.

To be effective, whitelisting requires that users have unique identifiers and that

content can be authenticated; otherwise, it is easy for malicious users to make their

communication seem to come from a whitelisted source. In most deployed email

systems, messages cannot be reliably authenticated. However, secure email services,

IM, VoIP services, and social networking sites can authenticate content. Whitelisting,

however, cannot eliminate unwanted invitations, which represents another form of

unwanted communication.

Another, similar approach is blacklisting, where each user or site specifies a list

of users who they are unwilling to receive content from. To be effective, though,
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blacklisting requires strong user identities, as malicious users could otherwise trivially

change identities. However, to date, no such large-scale strong identity system has

been deployed, and the political, legal, and social issues associated with such a system

make deployment in the near future unlikely.

3.4.3 Imposing a cost on the sender

A third approach taken to discourage unwanted communication is imposing a cost on

the originators of either all communication or unwanted communication. The cost

can be monetary or in terms of another limited resource. Optionally, systems can

impose a cost only on the senders of unwanted communications, instead of imposing

a cost on senders of both wanted and unwanted communication. We discuss some

specific proposals below.

Quotas and micropayments

Quota- and payment-based approaches attempt to change the economics of unwanted

communication by imposing a marginal cost on the transmission of an (unwanted)

message.

Systems have been proposed where senders must commit to paying a per-message

fee prior to sending digital communication [50, 138], and, occasionally, one-time fees

imposed by a trusted organization [59]. These solutions attempt to model the offline

postal service; they are based on the assumption that the cost will discourage mass

distribution of unwanted messages. There are a few examples of deployed systems
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that charge a per-message fee, such as LinkedIn [95] and Goodmail [59].

In some of the proposed systems, the per-message fee is charged only if the receiver

classifies the messages as unwanted. This feature is desirable because it preserves the

ability of any legitimate content originator to reach a large audience at low cost.

Otherwise, users who send a large amount of wanted communication are subject to

prohibitively high fees, thereby reducing the usefulness of the communication medium.

In general, one significant disadvantage of these proposals is that they typically

require an extensive micropayment infrastructure, which some have claimed is im-

practical [2, 88, 120]. Additionally, the cost could be in terms of a resource other

than money [139]. However, it may be difficult to ensure that the resource is readily

available to anyone in quantities sufficient for legitimate communication, but hard to

acquire in quantities needed for unwanted communication at a large scale.

Alternative systems impose a per-user quota on sending messages [156], limiting

each user to sending only a certain number of messages per day. Systems based on

quotas do not need micropayments but still require a market for the distribution

of the user quotas. This market must ensure that legitimate senders can obtain a

sufficient quota at reasonable cost, while the cost for spammers must be high enough

to discourage large-scale unwanted communication.



52

Challenge-response systems

In so-called challenge-response systems, the sender of a message must prove she is

a human (as opposed to a computer program) before the message is delivered. Like

micropayment systems, challenge-response systems impose a cost on senders, but

unlike micropayment systems, the cost is the human attention necessary to complete

the challenge, rather than money.

Although challenge-response systems can limit the amount of unwanted commu-

nication, these systems have several disadvantages. One disadvantage is that they

eliminate all automatically generated email messages, even when such messages are

wanted. The typical way that this issue is handled is by having users specify a special

email address to avoid false positives. Moreover, the need to complete a challenge may

annoy and discourage some legitimate senders, as has been observed with captchas

today [166]. Finally, if challenge-response systems were widely deployed, their de-

signers could face an arms race to develop challenges that can be easily answered by

most human users, yet cannot be answered by a program.

Legislation

Some countries have passed legislation that mandates a penalty for those sending

unwanted communication. There is little evidence that it has significantly reduced

the level of email spam received by users. There are at least two reasons why such

laws have had limited impact. First, spammers are using technical means to obscure
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the origin of unwanted communication. Second, the global nature of the Internet

makes it easy for spammers to operate from a location where they face little or no

risk of prosecution.

3.4.4 Content rating

Finally, a few proposals have looked at detecting unwanted communication in one-

to-many communication systems (unlike one-to-one communication systems that we

have discussed before). Many content-sharing sites (e.g., YouTube [167]) use content

rating. Users can indicate the level of interest, relevance, and appropriateness of

a content item they have viewed. The content is then tagged with the aggregated

user ratings. Content ratings can help users to identify relevant content and avoid

unwanted content. These ratings can also help system administrators to identify po-

tentially inappropriate content, which they can then inspect and possibly remove.

Moreover, content-rating systems can be manipulated, particularly in a system where

new user identities can be created without significant cost. A recent proposal has

looked at limiting the impact of multiple identities in the context of content rat-

ing [151], but has not been evaluating in a real-world system as of this writing.

3.4.5 Leveraging relationships

As Ostra uses the difficulty of establishing and maintaining links between users in

a social network, we now briefly describe other work which leverages social network

relationships. Trust between participating users has been used to replace certain
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centralized functions. For example, the use of transitive trust has been leveraged in

the PGP Web of Trust [172] to eliminate the need for a central certificate authority.

SybilGuard [169] and SybilLimit [168] use social network links to identify users with

many fake identities (Sybils). In brief, these systems look for large subsets of the

network that are connected to the rest of the network by just a few edges, suggesting

that the subset contains a number of fake identities.

Online social relationships are also used in several web-based applications to per-

form other tasks, such as content sharing [167], socializing [49], and professional

networking [95]. LinkedIn uses implicit whitelisting of a user’s friends and offers a

(manual) introduction service based on the social network. Similarly, F2F [89] uses

trust between users to provide a reliable storage system for user backups. However,

none of these systems leverage the social network to automatically enable legitimate

communication among users who have not had prior contact, while thwarting un-

wanted communication.

3.5 Personalized web search

Finally, in the last chapter of this thesis, we present the PeerSpective system, which

integrates Web search with online social networks and displays pages browsed by

friends in the results of a Web search. In this section, we describe systems which

have similar aims. Several projects have looked at replacing the functionality of the

large centralized Web search engines with a decentralized system. This architecture is
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similar to PeerSpective, as they are built from contributing users’ desktops [90]. Both

Minerva [19] and YaCy [164] implement a peer-to-peer Web search engine without any

points of centralization. Additionally, other projects [124,141] have examined replac-

ing the centralized PageRank computation of Google with a decentralized approach.

All of these projects, though, are primarily focused on replacing the functionality

of existing centralized search engines with a decentralized architecture, rather than

improving or personalizing Web search.

A few systems have looked at personalizing responses to queries by taking a user’s

preferences and interests into account when ranking pages. Most notably, A9 [1]

and Google Personalized Search [61] allow users to create profiles to which search

results are tailored. However, these systems require users to create detailed profiles

to perform well, which represents a significant burden on users. There has also been

much research into methods for automatically personalizing search queries by inferring

user interests [68, 150]. While these projects are concerned with personalization, the

approach taken PeerSpective is complementary in that we obtain personalization by

using social links to improve search results.

The MAAY [100] project has examined combining both of the above approaches,

providing a decentralized and personalized search engine. In ISpy [146], organizations

deploy a single web proxy which records the results of past queries and uses these to

influence future ones. Their approach is limited to the single social group consisting

of an organization, in contrast, PeerSpective is able to use an arbitrary social network
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graph to influence search results.
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Chapter 4

Measurement Methodology

We now describe the data used in this thesis, and the methodology used to collect

it. We were not able to obtain data directly from the respective site operators, as

most sites are hesitant to provide even anonymized data. Instead, we chose to crawl

the user graphs by accessing the public web interface provided by the sites. This

methodology gives us access to large data sets from multiple sites.

We discuss the data collected for each of the three measurement studies sepa-

rately. First, we detail general challenges faced when crawling large social networks.

Second, we describe the data collected for our analysis of the structure of online social

networks, which includes data from multiple online social networks and the Web. We

then describe the data collected to study how online social networks grow, and finally,

we detail the data collected to study community structures.

4.1 Challenges in crawling large graphs

Crawling large, complex graphs presents unique challenges. In this section, we dis-

cussing the details of how we crawled each network after we describe our general ap-

proach. Most real-world graphs have been shown to have a dominant large connected

component [23], which we call the large WCC. Therefore, we focus our methodology
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on crawling this component of the graph.

4.1.1 Crawling the entire large WCC

The primary challenge in crawling large graphs is covering the entire giant connected

component. At each step, one can generally only obtain the set of links into or out of

a specified node. In the case of online social networks, crawling the graph efficiently

is important since the graphs are large and highly dynamic. Common algorithms for

crawling graphs include breadth-first search (BFS) and depth-first search.

Often, crawling the entire giant connected component is not feasible, and one must

resort to using samples of the graph. Crawling only a subset of a graph by ending

a BFS early (called the snowball method) is known to produce a biased sample of

nodes [85]. In particular, partial BFS crawls are likely to overestimate node degree

and underestimate the level of symmetry [18]. In social network graphs, collecting

samples via the snowball method has been shown to underestimate the power-law

coefficient, but to more closely match other metrics, including the overall clustering

coefficient [85]. However, some previous studies of social networks have used small

graph samples. Example studies have used samples of 0.3% of Orkut users [6], less

than 1% of LiveJournal communities [12], and 0.08% of MySpace users [6]. In this

thesis, we obtain and study much larger samples of the user graphs.



59

4.1.2 Using only forward links

Crawling directed graphs, as opposed to undirected graphs, presents additional chal-

lenges. In particular, many graphs can only be crawled by following links in the

forward direction (i.e., one cannot easily determine the set of nodes which point into

a given node). Using only forward links does not necessarily crawl an entire WCC;

instead, it explores the connected component reachable from a set of seed users. This

limitation is typical for studies that crawl online networks, such as the Web [23].

START

ONLY USING

FORWARD LINKS

USING

BOTH FORWARD

AND REVERSE LINKS

Figure 4.1 : Users reached by crawling different link types. If only forward links
are used, we can reach only the inner cloud (shaded cloud); using both forward and
reverse links, we can reach the entire WCC (dashed cloud).

Figure 4.1 shows an example of a directed graph crawl. The users reached by

following only forward links are shown in the shaded cloud, and those reached using

both forward and reverse links are shown in the dashed cloud. Using both forward

and reverse links allows us to crawl the entire WCC, while using only forward links

results in a subset of the WCC.
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4.2 Capturing social networks’ structure

We now discuss our methodology for crawling each of the networks, their limitations,

and high-level statistics of the resulting data sets. Using automated scripts on a

cluster of 58 machines, we crawled the social network graphs of Flickr, LiveJournal,

Orkut, and YouTube. We chose these four sites because they are among the most

popular social networking sites and they allow us to view the links out of any user

in the network. In each step of our crawls, we retrieved the list of friends for a user

we had not yet visited and added the retrieved users to the list of users to visit. We

continued until we exhausted the list. This corresponds to a BFS of the social network

graphs. High-level statistics of the resulting data sets are presented in Table 5.1.

Since the focus of this part is to investigate the structure of online social networks,

we focus on the large WCC of the corresponding graphs in the rest of this thesis. As

we show later in this section, the large WCC is structurally the most “interesting”

part of the network. The nodes not included in the large WCC tend to be either part

of very small, isolated clusters or are not connected to other users at all.

4.2.1 Flickr

Flickr (www.flickr.com) is a photo-sharing site based on a social network. The Flickr

data presented in this thesis is from a crawl of the large WCC conducted on January

9th, 2007, and contains over 1.8 million users and 22 million links. Flickr exports an

API for third-party developers, and we used this API to conduct the crawl. We also
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obtained group membership information via Flickr’s API.1

Flickr only allows us to query for forward links. Therefore we were unable to crawl

the entire large WCC. To estimate the fraction of users who are part of the WCC

but missing in our crawl, we performed the following experiment. We used the fact

that the vast majority of Flickr user identifiers take the form of [randomly selected 8

digit number]@N00. We generated 100,000 random user identifiers of this form (from

a possible pool of 90 million) and found that 6,902 (6.90%) of these were assigned

usernames. These 6,902 nodes form a random sample of Flickr users.

Among these 6,902 users, 1,859 users (26.9%) had been discovered during our

crawl. Focusing on the 5,043 users not previously discovered by our crawl, we con-

ducted a BFS starting at each user to determine whether or not they could reach

our set of previously crawled users. We found that only 250 (5.0%) of the missed

users could reach our crawled set and were definitively in the WCC. While we cannot

conclusively say that the remaining 4,793 (95.0%) missed users are not attached to

the WCC (there could be some other user who points to them and to the WCC), the

fact that 89.7% of these have no forward links suggests that many are not connected

at all.

Finally, to explore how the remaining missing nodes are connected, we crawled

the social network using these missing users as seeds, and compared the results with

1Flickr also allows users to form private groups, which do not appear in the user’s profile list.

We were unable to determine any information about the membership of such groups.
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our initial crawl. We found only 11,468 new nodes that were not in the connected

component of 1.8 million nodes discovered in the original crawl. Of these new nodes,

5,142 (44.8%) were nodes with no forward links, 3,370 (29.3%) had one link, 620

(5.4%) had two or three links, and 2,336 (20.3%) had four or more links. Thus, the

nodes missing from our crawls tend to have low degree and are connected only to small

clusters that are not reachable from the large connected component we crawled.

Thus, we believe that our crawl of the large WCC, although not complete, covers

a large fraction of the users who are part of the WCC. Further, our experience with

the randomly generated Flickr user identifiers indicates that (at least for Flickr), the

nodes not in the largest WCC do not form large subgraphs.

4.2.2 LiveJournal

LiveJournal (www.livejournal.com) is a popular blogging site whose users form a

social network. The LiveJournal data set considered in this thesis is the largest we

examine: it contains over 5.2 million users and 72 million links. Due to its size, the

LiveJournal crawl took several days, from December 9-11, 2006. LiveJournal offers

an API that allows us to query for both forward and reverse links. We followed

both link types to crawl the entire large WCC. We also obtained group membership

information via LiveJournal’s API.2

To estimate the fraction of the LiveJournal network covered by our crawl, we

2We inferred groups in LiveJournal by crawling the interests specified by users.
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used a feature of LiveJournal3 that returns random users. We selected a list of 5,000

random LiveJournal users and then checked how many of these random users our crawl

had already covered. We found that we had already crawled 4,773 (95.4%) of these

users, showing that our LiveJournal crawl covers the vast majority of the LiveJournal

population. Finally, we started another crawl from the previously unknown 227 users

to determine how many additional users could be discovered. This technique found

only 73 additional users. These results suggest that our LiveJournal crawl covers

almost the entire LiveJournal user population, and that the users not included in our

crawl are part of small, isolated clusters.

Using the entire WCC from LiveJournal, we calculated the fraction of the WCC

that is not reachable by using only forward links (as we did for the Flickr and YouTube

crawls). We found that of the 5,284,457 nodes in the discovered WCC, only 404,134

(7.64%) would have been missed had we followed only forward links. Finally, we

examined the 404,134 users who would have been missed to see how well these users

were connected. We found that 201,694 (49.9%) of these users had a single forward

link, 86,561 (21.1%) had two or three links, and 78,463 (19.4%) of the users had four

or more forward links. Since, as we will show later, Flickr and YouTube share many

characteristics with LiveJournal, this result suggests that the users that are missing

in our Flickr and YouTube crawls tend to be small in number and have relatively

small outdegree.

3http://www.livejournal.com/random.bml
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4.2.3 Orkut

The next site we examined is Orkut (www.orkut.com), a social networking site run

by Google. Orkut is a “pure” social network, as the sole purpose of the site is social

networking, and no content is being shared. In Orkut, links are undirected and link

creation requires consent from the target. Since, at the time of the crawl, new users

had to be invited by an existing user to join the system, the Orkut graph forms a

single SCC by definition.

The Orkut data considered in this thesis was collected during a crawl performed

between October 3rd and November 11th, 2006. Because Orkut does not export an

API, we had to resort to the bandwidth-intensive process of HTML screen-scraping

to conduct our crawl. We obtained group information in a similar manner. Crawl-

ing Orkut presented other challenges, as Orkut limits the rate at which a single IP

address can download information and requires a logged-in account to browse the

network. As a result, it took more than a month to crawl a total of 3,072,441 users,

at which point we stopped. This subset of the entire network corresponds to 11.3% of

Orkut’s user population of about 27 million users at the time of the crawl. The Orkut

data considered in this thesis, therefore, is limited to this connected component and

disregards all links from this component to other, uncrawled users.

Because our Orkut data set contains only a sample of the entire Orkut network,

there are two potential concerns with the representativeness of the data. The first

concern is whether the 11.3% subset of the network we gathered would be similar to
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a different 11.3% subset gathered in the same way. In other words, are the properties

of our sample representative of other samples of similar size? The second concern

is whether the properties of our sample are representative of the properties of the

network as a whole.

To explore the first of these concerns, we conducted five separate, small crawls

of Orkut starting from random locations. Our random starting locations were cho-

sen using Maximum-Degree random sampling [11] configured with a path length of

100,000 hops. Each of the five crawls was configured to cover 80,000 nodes in the

same manner as our single, large crawl. We then compared the properties of the

resulting samples.

We found that the properties of the five smaller crawls were similar, even though

these crawls covered only 0.29% of the network each. For example, we found that the

clustering coefficient of these crawls had an average of 0.284 with a standard deviation

of 0.040. Similarly, we found that the scale-free metric had an average of 0.550 with

a standard deviation of 0.083 (both of these metrics are discussed in more detail in

the following section). Thus, we believe that the properties of our 11.3% sample of

the network are likely to be similar to other crawls of similar size that are done in

the same manner.

However, we caution the reader to be mindful of the second concern when extrap-

olating the results from our crawl to the entire Orkut network. Partial BFS crawls

are known to over-sample high-degree nodes, and under-sample low-degree nodes [85].
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This has been shown to overestimate the average node degree and to underestimate

the level of symmetry [18]. Thus, our results may not be representative of the Orkut

network as a whole.

4.2.4 YouTube

YouTube (www.youtube.com) is a popular video-sharing site that includes a social

network. The YouTube data we present was obtained on January 15th, 2007 and

consists of over 1.1 million users and 4.9 million links. Similar to Flickr, YouTube

exports an API, and we used this feature to conduct our crawls.

YouTube allows links to be queried only in the forward direction, similar to Flickr.

Unfortunately, YouTube’s user identifiers do not follow a standard format,4 and we

were therefore unable to create a random sample of YouTube users. Also, YouTube

does not export group information via the API. Instead, we obtained group member-

ship information by screen-scraping the HTML pages attached to user profiles.

Because we were unable to crawl reverse links or estimate the size of the user

population in YouTube, we advise the reader to be cautious in extrapolating the

YouTube results to the entire YouTube population, as we do not know the number

of users who do not participate in the social network.

4YouTube’s user identifiers are user-specified strings.
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4.2.5 Web graph

In order to compare the structure of social networks with that of the Web, we made

use of data collected by the Stanford WebBase Project [149]. We employed the data

from their crawl of November 2003. The crawl includes 8.6 million pages and 132

million hyperlinks collected from over 3900 crawled Web sites.

4.2.6 Summary

Our results indicate that

• The Flickr and YouTube data sets may not contain some of the nodes in the

large WCC, but this fraction is likely to be very small.

• The LiveJournal data set covers almost the complete population of LiveJournal,

and contains the entire large WCC.

• The Orkut data set represents a modest portion of the network, and is subject

to the sampling bias resulting from a partial BFS crawl.

Moreover, the results also indicate that the vast majority of missed nodes in Flickr,

LiveJournal, and YouTube have low degree and are likely to be part of small, isolated

clusters.

Based on the number of user accounts each site claimed to have at the time of

the crawl, we estimate the fraction of nodes our crawls cover in Table 4.1. Note

that, unfortunately, we do not know the number of accounts in YouTube and were
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Users crawled Total population Coverage

Flickr 1,846,198 6,800,000 26.9%

LiveJournal 5,284,457 5,500,000 95.4%

Orkut 3,072,441 27,000,000 11.3%

YouTube 1,157,827 n/a n/a

Table 4.1 : Coverage of social networking site crawls.

therefore unable to estimate the fraction of the population that our 1.1 million crawled

YouTube users represent.

4.3 Capturing group membership

All the sites we considered allow users to form groups. We determined a user’s

group membership using corresponding APIs in Flickr and LiveJournal. On YouTube

and Orkut, we determined a user’s groups by screen-scraping the HTML pages that

contain the user’s profile. Note that since Flickr allows users to form private groups,

we were unable to determine any information about the membership of such groups.

4.4 Capturing social networks’ growth

We now describe the methodology for collecting information on the evolution of online

social networks, and the data we collected. In order to compare our results to the

evolution of other, well-understood networks, we also collected data on the evolution

of the Wikipedia article network and the Internet’s autonomous system network.
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Descriptions of the methodology for collecting data on these are also included below.

Using automated scripts on a cluster of 58 machines, we crawled the social network

graphs of Flickr and YouTube once per day. We chose these sites because they

represent different types of online social networking sites and because it is possible to

crawl the entire network once per day. On each day, we revisited every user we had

previously discovered, in additional to all nodes that were reachable from the seed

node, and recorded any newly created or removed links and nodes.

Since the sites do not provide the time of creation for any node or link, our growth

data for the social networks has a granularity of one day for the links we observed

being created. As a result, we cannot determine the exact time of link creation, or the

order in which links were created within a single day. Moreover, new nodes cannot be

observed until they become connected to one of the nodes we have already crawled.

Additionally, in the rest of the thesis, we only examine links that we observed being

created. In other words, we may discover a new node that has a few established links,

but we do not examine these previously established links in our growth analysis, as

we did not observe them being created.

4.4.1 Flickr

We crawled the Flickr network daily between November 2nd, 2006 and December 3rd,

2006, and again daily between February 3rd, 2007 and May 18th, 2007, representing

a total of 104 days of growth. During that period of daily growth observations, we
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observed over 10.7 million new links being formed and discovered over 680,000 new

users. This represents, relative to the initial network snapshot, over 42% growth in

the number of users and over 63% growth in the number of links.

4.4.2 YouTube

We crawled the YouTube network daily between December 10th, 2006 and January

15th, 2007, and again daily between February 8th, 2007 and July 23rd, 2007, rep-

resenting 201 days of growth. Between the two date ranges of our crawls, YouTube

changed its policy to require confirmation from the destination of a link (previously,

this approval was not required). Thus, between our two observation periods, YouTube

changed from a directed network to an undirected network. To properly analyze the

data before and after this significant change in policy, we treat the two YouTube net-

works separately — we denote the first set of growth data covering the directed graph

as YouTube-D and the second set representing the undirected graph as YouTube-U.

The YouTube-D data set represents the growth of a directed network over a period

of 36 days. During that period of daily growth observations, we observed over 540,000

new links being formed and discovered over 130,000 new users. This represents,

relative to the initial network snapshot, over 13% growth in the number of users and

over 12% growth in the number of links.

The YouTube-U data set represents the growth of an undirected network over a

period of 165 days. We observed the network grow by over 11.7 million links and over
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1.8 million users. This represents, relative to the initial network snapshot, over 129%

growth in the number of users and over 173% growth in the number of links.

4.4.3 Wikipedia

Wikipedia (www.wikipedia.org) is a popular online encyclopedia that allows any

user to add or edit content. Wikipedia makes its entire edit history available on a

monthly basis, and we downloaded the edit history of the English language Wikipedia

as of April 6th, 2007.

To extract the graph of links between Wikipedia pages, we used the following

method: for each link in the current snapshot, we determined the time when this

link was first created. We then construct a graph using these derived links and the

associated timestamps. This method allows us to remove the effects of page van-

dalism, where malicious users sometimes overwrite entire pages, thereby temporarily

removing all of the links from vandalized pages.

Since Wikipedia allows pages to redirect to other pages, we configured our tool

to follow the redirects, and treat a link to a redirect page as if it was a link to the

destination page. Thus, if page A originally linked to B at time t, but later, B was

set to redirect to C, we treat this like a link from A to C established at time t. This

allows us to handle multiple layers of redirect pages, as well as large-scale naming

convention changes.

Since the data represents the complete history of a complex network, we exclude
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startup effects by limiting our analysis to the recent history. This is similar to previous

studies [25, 114]. In particular, we only consider links created between January 1st,

2005 and April 6th, 2007, a period of 826 days. During this period, we observed over

1.1 million new pages and over 33 million new links, representing 169% growth in the

number of pages and 500% growth in the number of links relative to the snapshot on

January 1st, 2005.

4.4.4 Internet topology

The Internet can be viewed as a collection of autonomous systems (AS), where each

AS represents a single administrative domain (typically, an ISP). The inter-domain

routing protocol of the Internet, BGP, uses unique AS numbers to allow ASes to

advertise their connections to their neighbors. The union of these advertisements

forms an undirected graph representing the AS-level connectivity of the Internet.

We used the AS topology graphs collected by CAIDA [24] to study the evolution

of the AS network. CAIDA creates weekly (monthly for the first two years) snapshots

of the AS topology using a number of BGP monitoring machines. We downloaded the

entire history of their measurements, which covers the period from January 5th, 2004

until July 9th, 2007. The AS topology evolution data therefore covers 1,282 days of

growth. During this period, the number of ASes in the network grew from 9,978 to

25,526, a growth of 155%. Similarly, the number of AS links grew from 29,504 to

104,824, a growth of 255%.
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4.5 Capturing communities

In this section, we describe the data set we collected for close analysis of community

information, and we discuss its limitations.

4.5.1 Measurement methodology

Our data set was collected by crawling part of the Facebook [49] social network

through the site’s public web interface. We crawled the part of the Facebook social

network that consists of Rice University students and alumni. We started by logging

into the Facebook user account of one of the authors, who is a student at Rice

University. We then conducted a breadth-first-search (BFS) of all reachable users in

the Rice network, in the same manner as in previous work [105]. By default, Facebook

allows all users whose email addresses have the same domain (rice.edu in this case)

to view each others’ friends, and we were thus able to crawl a large portion of the

Rice Facebook network.

The data collected for this thesis is from a crawl conducted over 9 hours on May

17th, 2008. In total, we discovered 6,156 users in our crawl, who are connected

together with 377,350 links. This represents a network with an average user degree

of 61.29.
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4.5.2 Collected data

From the Facebook crawl, we only collected the names of the users and their list of

friends. We collected additional information about the users by querying the Rice

University Student Directory [136] and the Rice University Alumni Directory [135].

From these two directories, we were able to determine the users’ matriculation year,

graduation year, residential college5, and major(s) or department.

To correlate the Facebook user list with the directories, we first looked up each

user’s name in the Student Directory, and then the Alumni Directory. If a single

entry was found in either directory, the information from that entry was used. If

multiple entries were found that exactly matched the student’s name, we disregarded

the student. We used a conservative matching policy: only exact name matches were

used.6

Overall, we found unique matches for 1,781 students in the Student Directory and

2,093 additional students in the Alumni Directory. This left us with 2,282 Facebook

users who we were unable to match with a directory listing; we disregarded these

users. Of the 3,874 students we were able to find records for, 1,233 (31.8%) were

5Rice University has nine residential colleges, to which incoming undergraduate students are

randomly assigned. The colleges serve as dormitories, cafeterias, and social circles; students stay at

the same college during their entire undergraduate tenure.

6The only exception was a list of common nicknames, such as Bob for Robert and Chris for

Christopher. In these cases, a match between a name and a nickname was allowed if there was only

one entry found in the Facebook crawl and in the student or alumni directory.
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current undergraduate students, 548 (14.1%) were current graduate students, 1,856

(47.9%) were undergraduate alumni, and 237 (6.11%) were graduate alumni.

As a point of reference, the total number of current undergraduate and graduate

students at Rice is 3,001 and 2,144, respectively [134]. Thus, we were able to locate

41.1% of the current undergraduate and 25.6% of the current graduate students in

Facebook.

4.5.3 Limitations

Our Facebook crawl includes only those users who had not changed the default Face-

book privacy setting, which shares the friend list with users whose email address has

the same domain. During our crawl, we found that 360 of the 6,156 users (5.85%)

had changed their privacy settings so that their friend list was not accessible to us.

Our crawl is also limited by our ability to match names between Facebook accounts

and information in the directories. Rice students can elect to remove their information

from the online directory; in this case, we would not be able to find corresponding

entries in the directories. Additionally, users with all but the most common nicknames

are likely to be missed by our correlation procedure. Indeed, we found that we were

unable to match 37.1% of the Facebook users we discovered with entries in either

online directory.

Additionally, there may be users who were not connected to the large, strongly

connected component of the social network we crawled. Because Facebook does not
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provide a way to select random user accounts, we are unable to estimate the fraction

of Rice University Facebook accounts that we were unable to crawl.

4.6 Data availability

All of the data sets considered in this thesis, with the exception of the Facebook data

from Rice University, are available to the research community. The data has been

anonymized in order to ensure the privacy of the social network users. A detailed

description of the data format and downloading instructions are available at

http://socialnetworks.mpi-sws.org
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Chapter 5

Network Structure

Unlike the Web, which is largely organized around content, online social networks

are organized around users. Participating users join a network, publish their profile

and any content, and create links to any other users with whom they associate.

The resulting social network provides a basis for maintaining social relationships, for

finding users with similar interests, and for locating content and knowledge that has

been contributed or endorsed by other users.

An in-depth understanding of the graph structure of online social networks is

necessary to evaluate current systems, to design future online social network based

systems, and to understand the impact of online social networks on the Internet.

For example, understanding the structure of online social networks might lead to

algorithms that can detect trusted or influential users, much like the study of the

Web graph led to the discovery of algorithms for finding authoritative sources in

the Web [74]. Moreover, recent work has proposed the use of social networks to

mitigate email spam [57], to improve Internet search [104], and to defend against

Sybil attacks [169]. However, these systems have not yet been evaluated on real

social networks at scale, and little is known to date on how to synthesize realistic

social network graphs.
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In this chapter, we characterize the structural properties of four online social net-

works. We compare the networks to each other, and we compare their properties with

those previously observed for the Web. The Web is one of the most well-studied online

networks, and our study shares much of its methodology with previous studies of the

Web. Thus, it is perhaps natural to tend to compare our results with the structure

of the Web. However, we are well aware that the user graph in social networks is

fundamentally different from the interconnection of web pages; our comparisons serve

more to calibrate our results than to point out (expected) differences.

The focus of our work is the social network users within the sites we study. More

specifically, we study the properties of the large WCC in the user graphs of four

popular sites. We do not attempt to study the entire user community (which would

include users who do not use the social networking features), information flow, or

workload of online social networking sites. While these topics are important, they are

beyond the scope of this thesis.

5.1 High-level data statistics

Table 5.1 presents the high-level statistics of the four networks we examine in this

chapter. The crawled network sizes vary by almost a factor of five (1.1 million users

in YouTube versus 5.2 million in LiveJournal), and the number of links varies by al-

most two orders of magnitude (4.9 million in YouTube versus 223 million in Orkut).

Similarly, other metrics such as the average number of friend links per node and user
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Flickr LiveJournal Orkut YouTube

Number of users 1,846,198 5,284,457 3,072,441 1,157,827

Estimated coverage 26.9% 95.4% 11.3% unknown

Dates of crawl Jan 9, 2007 Dec 9 - 11, 2006 Oct 3 - Nov 11, 2006 Jan 15, 2007

Number of links 22,613,981 77,402,652 223,534,301 4,945,382

Friends per user 12.24 16.97 106.1 4.29

Fraction symmetric links 62.0% 73.5% 100.0% 79.1%

Number of groups 103,648 7,489,073 8,730,859 30,087

Memberships per user 4.62 21.25 106.44 0.25

Table 5.1 : High-level statistics of social networking site crawls.

participation in shared interest groups also vary by two to three orders of magni-

tude. Our analysis later will show that despite these differences, these graphs share

a surprisingly large number of key structural properties.

5.2 Link symmetry

The fact that links are directed can be useful for locating content in information

networks. For example, in the Web graph, search algorithms such as PageRank [122]

consider a directed link from a source to a destination as an endorsement of the

destination by the source, but not vice-versa. For instance, numerous Web pages

point to sites like cnn.com or nytimes.com, but very few pages receive pointers

back from these sites. Search engines leverage this to identify reputed sources of
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information, since pages with high indegree tend to be authorities [74].

With the exception of Orkut, links in the social networks we studied are directed

and users may therefore link to any other user they wish. The target of the link may

reciprocate by placing a link pointing back at the source. Our analysis of the level of

symmetry in social networks, shown in Table 5.1, reveals that all three social networks

with directed links (Flickr, LiveJournal, and YouTube) have a significant degree of

symmetry. Their high level of symmetry is consistent with that of offline social

networks [63]. Furthermore, social networking sites inform users of new incoming

links, which may also contribute to the high level of symmetry.

Independent of the causes, the symmetric nature of social links affects the net-

work structure. For example, symmetry increases the overall connectivity of the

network and reduces its diameter. Symmetry can also make it harder to identify

reputable sources of information just by analyzing the network structure, because re-

puted sources tend to dilute their importance when pointing back to arbitrary users

who link to them.

5.3 Power-law node degrees

We begin to examine the graph structure by considering the node degree distribu-

tion. As discussed in Chapter 3, the degree distributions of many complex networks,

including offline social networks, have been shown to conform to power-laws. Thus,

it may not be surprising that social networks also exhibit power-law degree distri-
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butions. However, as our analysis shows, the degree distributions in social networks

differ from that of other power-law networks in several ways.
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Figure 5.1 : Log-log plot of outdegree complementary cumulative distribution func-
tions (CCDF). All social networks show properties consistent with power-law net-
works.

Figures 5.1 and 5.2 shows the outdegree and indegree complementary cumulative

distribution functions (CCDF), respectively, for each measured social network. All

of the networks show behavior consistent with a power-law network; the majority of

the nodes have small degree, and a few nodes have significantly higher degree. To

test how well the degree distributions are modeled by a power-law, we calculated the
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Figure 5.2 : Log-log plot of indegree complementary cumulative distribution functions
(CCDF). All social networks show properties consistent with power-law networks.
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best power-law fit using the maximum likelihood method [33]. Table 5.2 shows the

estimated power-law coefficient along with the Kolmogorov-Smirnov goodness-of-fit

metric [33]. While the best power-law coefficients approximate the distributions very

well for Flickr, LiveJournal, and YouTube, the Orkut data deviates significantly.

Two factors contribute to this deviation. First, our Orkut crawl reached only

11.3% of the network — partial BFS crawls tend to undersample nodes with lower

degree, which can explain the flat head of the distribution [85]. Second, both Live-

Journal and Orkut artificially cap a user’s number of outgoing links,1 which leads to

a distortion in the distribution for high degrees.

Outdegree Indegree

Network α D α D

Web [23] 2.67 - 2.09 -

Flickr 1.74 0.0575 1.78 0.0278

LiveJournal 1.59 0.0783 1.65 0.1037

Orkut 1.50 0.6319 1.50 0.6203

YouTube 1.63 0.1314 1.99 0.0094

Table 5.2 : Power-law coefficient estimates (α) and corresponding Kolmogorov-
Smirnov goodness-of-fit metrics (D). The Flickr, LiveJournal, and YouTube networks
are well approximated by a power-law.

1Orkut caps the outdegree at 1,000, and LiveJournal at 750. Both of these caps were instituted

after the networks were established, and some users therefore exceed the caps. Also, Flickr has since

instituted a cap of 3,000 non-reciprocal links; however, the data shown here was collected before this

cap was established.
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Additionally, we tested the stability of the power-law coefficient estimates by

running the maximum likelihood estimator over varyingly sized subsamples of our

data [162]. We found that the estimates of the power-law coefficient were remarkably

stable; the estimates varied by less than 6% from those provided in Table 5.2 when

we considered as few as 1,000 data points.

Table 5.2 also shows a difference between the structure of social networks and

that of previously observed networks. In the Web, for example, the indegree and

outdegree power-law exponents have been shown to differ significantly, while the

power-law exponents for the indegree and outdegree distributions in each of our social

networks are very similar. This implies that in online social networks, the distribution

of outgoing links is similar to that of incoming links, while in the Web, the incoming

links are significantly more concentrated on a few high-degree nodes than the outgoing

links.
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Figure 5.3 : Plot of the distribution of links across nodes. Social networks show
similar distributions for outgoing and incoming links, whereas the Web links shows
different distributions.



85

Focusing on this difference, Figure 5.3 shows the distribution of incoming and

outgoing links over nodes in the Web and Flickr graphs.2 The difference is readily

apparent: 5% of the Web nodes account for 75% of all incoming links, but for only

25% of all outgoing links. In all social networks we considered, the distributions of

incoming and outgoing links across the nodes are very similar. We now examine this

phenomenon in more detail.

5.4 Correlation of indegree and outdegree

Studies of the indegree and outdegree distributions in the Web graph helped re-

searchers find better ways to find relevant information in the Web. In the Web, the

population of pages that are active (i.e., have high outdegree) is not the same as

the population of pages that are popular (i.e., have high indegree) [74]. For exam-

ple, many Web pages of individual users actively point to a few popular pages like

wikipedia.org or cnn.com. Web search techniques are very effective at separating

a very small set of popular pages from a much larger set of active pages.

In social networks, the nodes with very high outdegree also tend to have very high

indegree. In our study, for each network, the top 1% of nodes ranked by indegree

has a more than 65% overlap with the top 1% of nodes ranked by outdegree. The

corresponding overlap in the Web is less than 20%. Hence, active users (i.e., those

2The Flickr topology is representative of all four networks; we omitted the others in the plot for

readability.
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who create many links) in social networks also tend to be popular (i.e., they are the

target of many links). Figure 5.4 shows the extent of the overlap between the top x%

of nodes ranked by indegree and outdegree.
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Figure 5.5 : CDF of outdegree to indegree ratio. Social networks show much stronger
correlation between indegree and outdegree than the Web.

Next, we compared the indegree and outdegree of individual nodes in the social
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networks. Figure 5.5 plots the cumulative distributions of the outdegree-to-indegree

ratio for the four social networks and the Web. The social networks show a remarkable

correspondence between indegree and outdegree; for all networks, over 50% of nodes

have an indegree within 20% of their outdegree. The distribution for the Web is

markedly different; most nodes have considerably higher outdegree than indegree,

while a small fraction of nodes have significantly higher indegree than outdegree.

The high correlation between indegree and outdegree in social networks can be

explained by the high number of symmetric links. The high symmetry may be due to

the tendency of users to reciprocate links from other users who point to them. This

process would result in active users (who place many outgoing links) automatically

receiving many incoming links, and lead to the distributions we have observed.

5.5 Path lengths and diameter

Next, we look at the properties of shortest paths between users. Table 5.3 shows the

average path lengths, diameters, and radii3 for the four social networks. In absolute

terms, the path lengths and diameters for all four social networks are remarkably

short. Interestingly, despite being comparable in size to the Web graph we considered,

the social networks have significantly shorter average path lengths and diameters.

This property may again result from the high degree of reciprocity within the social

3Due to the computational complexity associated with determining the actual radius and diam-

eter, the numbers presented here are from determining the eccentricity of 10,000 random nodes in

each network.
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networks. Incidentally, Broder et al. [23] noted that if the Web were treated as an

undirected graph, the average path length would drop from 16.12 to 7.

Network Average Path Length Radius Diameter

Web [23] 16.12 475 905

Flickr 5.67 13 27

LiveJournal 5.88 12 20

Orkut 4.25 6 9

YouTube 5.10 13 21

Table 5.3 : Average path length, radius, and diameter of the studied networks. The
path length between random nodes is very short in social networks.

5.6 Link degree correlations

To further explore the difference in network structure between online social networks

and previously observed networks, we examine which users tend to connect to each

other. In particular, we focus on the joint degree distribution (JDD), or how often

nodes of different degrees connect to each other.

5.6.1 Joint degree distribution

The JDD is approximated by the degree correlation function knn, which is a mapping

between outdegree and the average indegree of all nodes connected to nodes of that

outdegree. Clearly, an increasing knn indicates a tendency of higher-degree nodes to
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connect to other high-degree nodes; a decreasing knn represents the opposite trend.

Figure 5.6 shows a plot of knn for the four networks we studied.
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Figure 5.6 : Log-log plot of the outdegree versus the average indegree of friends. The
scale-free metrics, included in the legend, suggest the presence of a well-connected
core.

The trend for high-degree nodes to connect to other high-degree nodes can be

observed in all networks except YouTube (the unexpected bump at the head of the

Orkut curve is likely due to the undersampling of users). This suggests that the high-

degree nodes in social networks tend to connect to other high-degree nodes, forming

a “core” of the network. Anecdotally, we believe that the different behavior seen in
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YouTube is due its more “celebrity”-driven nature; there are a few extremely popular

users on YouTube to whom many unpopular users connect.

To quantitatively explore this phenomenon, we next examine two metrics based

on the joint degree distribution: the scale-free metric s and the assortativity r.

5.6.2 Scale-free behavior

The scale-free metric of the networks are shown in the legend of Figure 5.6. All of

the networks with the exception of YouTube show a significant s, indicating that

high-degree nodes tend to connect to other high-degree nodes, and low-degree nodes

tend to connect to low-degree nodes.

5.6.3 Assortativity

The scale-free metric is related to the assortativity coefficient r, which is a measure of

the likelihood for nodes to connect to other nodes with similar degrees. Recent work

has suggested that the scale-free metric is more suitable for comparing the structure

of different graphs [8], as it takes into account the possible configurations of networks

with properties including connectedness and no self-loops. However, for completeness,

we calculated the assortativity coefficients for each of the networks, and found 0.202

for Flickr, 0.179 for LiveJournal, 0.072 for Orkut, and -0.033 for YouTube.

The assortativity shows yet another difference between the social networks and

other previously observed power-law networks. For example, the Web and the In-

ternet have both been shown to have negative assortativity coefficients of -0.067 and
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-0.189, respectively [116]. On the other hand, many scientific coauthorship networks,

a different type of social network, have been shown to have positive r [116].

Taken together, the significant scale-free metric and the positive assortativity

coefficient suggests that there exists a tightly-connected “core” of the high-degree

nodes which connect to each other, with the lower-degree nodes on the fringes of the

network. In the next few sections, we explore the properties of these two components

of the graph in detail.

5.7 Densely connected core

We loosely define a core of a network as any (minimal) set of nodes that satisfies

two properties. First, the core must be necessary for the connectivity of the network

(i.e., removing the core breaks the remainder of the nodes into many small, discon-

nected clusters). Second, the core must be strongly connected with a relatively small

diameter. Thus, a “core” is a small group of well-connected group of nodes that is

necessary to keep the remainder of the network connected.

To more closely explore the core of the network, we use an approximation previ-

ously used in Web graph analysis [23]. Specifically, we remove increasing numbers of

the highest degree nodes and analyze the connectivity of the remaining graph.4 We

calculate the size of the largest remaining SCC, which is the largest set of users who

can mutually reach each other.

4The large size of the graphs we study makes a cut set analysis computationally infeasible.
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As we remove the highest degree nodes, the largest SCC begins to split into

smaller-sized SCCs. Figure 5.7 shows the composition of the splits as we remove

between 0.01% and 10% of the highest-degree nodes in Flickr. The corresponding

graphs for the other social networks look similar, and we omit them for clarity. Once

we remove 10% of the highest indegree nodes,5 the largest SCC partitions into millions

of very small SCCs consisting of only a handful of nodes.
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Figure 5.7 : Breakdown of network into SCCs when high-degree nodes are removed,
grouped by SCC size.

To understand how much the network core contributes towards the small path

lengths, we analyzed the path lengths of subgraphs containing only the highest-degree

nodes. Figure 5.8 shows how path lengths increase as we generate larger subgraphs

of the core by progressively including nodes ordered inversely by their degree. The

average path length increases sub-logarithmically with the size of the core. In Flickr,

5We obtained the similar results when using both indegree and outdegree, thus we only present

the indegree results here.
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for example, the overall average path length is 5.67, of which 3.5 hops involve the

10% of nodes in the core with the highest degrees. This suggests that the high-degree

core nodes in these networks are all within roughly four hops of each other, while the

rest of the nodes, which constitute the majority of the network, are at most a few

hops away from the core nodes.
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Figure 5.8 : Average path length among the most well-connected nodes. The path
length increases sub-logarithmically.

Thus, the graphs we study have a densely connected core comprising of between

1% and 10% of the highest degree nodes, such that removing this core completely

disconnects the graph.

The structure of social networks, with its high dependence on few highly connected

nodes, may have implications for information flow, for trust relationships, and for the

vulnerability of these networks to deliberate manipulation. The small diameter and

path lengths of social networks are likely to impact the design of techniques for finding

paths in such networks, for instance, to check how closely related a given pair of nodes
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is in the network. Such techniques have applications, for instance, in social networks

used to verify the trustworthiness or relevance of received information [57].

5.8 Tightly clustered fringe

Next, we consider the graph properties at the scale of local neighborhoods outside of

the core. We first examine clustering, which quantifies how densely the neighborhood

of a node is connected.

Ratio to Random Graphs

Network C Erdös-Rényi Power-Law

Web [3] 0.081 7.71 -

Flickr 0.313 47,200 25.2

LiveJournal 0.330 119,000 17.8

Orkut 0.171 7,240 5.27

YouTube 0.136 36,900 69.4

Table 5.4 : The observed clustering coefficient, and ratio to random Erdös-Réyni
graphs as well as random power-law graphs.

Table 5.4 shows the clustering coefficients for all four social networks. For compar-

ison, we show the ratio of the observed clustering coefficient to that of Erdös-Réyni

(ER) random graphs [48] and random power-law graphs constructed with preferential

attachment [15], with the same number of nodes and links. ER graphs have no link

bias towards local nodes. Hence, they provide a point of reference for the degree of

local clustering in the social networks. Graphs constructed using preferential attach-
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ment also have no locality bias, as preferential attachment is a global process, and

they provide a point of reference to the clustering in a graph with a similar degree

distribution.

The clustering coefficients of social networks are between three and five orders

of magnitude larger than their corresponding random graphs, and about one order

of magnitude larger than random power-law graphs. This unusually high clustering

coefficient suggests the presence of strong local clustering, and has a natural expla-

nation in social networks: people tend to be introduced to other people via mutual

friends, increasing the probability that two friends of a single user are also friends.
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Figure 5.9 : Clustering coefficient of users with different outdegrees. The users with
few “friends” are tightly clustered.

Figure 5.9 shows how the clustering coefficients of nodes vary with node outdegree.

The clustering coefficient is higher for nodes of low degree, suggesting that there is

significant clustering among low-degree nodes. This clustering and the small diameter

of these networks qualifies these graphs as small-world networks [159], and further
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indicates that the graph has scale-free properties.

5.9 Groups

In many online social networks, users with shared interests may create and join groups.

Table 5.5 shows the high-level statistics of user groups in the four networks we study.

Participation in user groups varies significantly across the different networks: only

8% of YouTube users but 61% of LiveJournal users declare group affiliations. Once

again, the group sizes follow a power-law distribution, in which the vast majority

have only a few users each.

Network Groups Usage Average Size Average C

Flickr 103,648 21% 82 0.47

LiveJournal 7,489,073 61% 15 0.81

Orkut 8,730,859 13% 37 0.52

YouTube 30,087 8% 10 0.34

Table 5.5 : Table of the high-level properties of network groups including the fraction
of users which use group features, average group size, and average group clustering
coefficient.

Note that users in a group need not necessarily link to each other in the social

network graph. As it turns out, however, user groups represent tightly clustered

communities of users in the social network. This can be seen from the average group

clustering coefficients of group members, shown in Table 5.5.6 These coefficients are

6We define the group clustering coefficient of a group G as the clustering coefficient of the subgraph
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higher than those of the corresponding network graph as a whole (shown in Table 5.4).

Further, the members of smaller user groups tend to be more clustered than those

of larger groups. Figure 5.10 shows this by plotting the average group clustering

coefficient for groups of different sizes in the four observed networks. In fact, many

of the small groups in these networks are cliques.
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Figure 5.10 : Plot of group size and average group clustering coefficient. Many small
groups are almost cliques.

Finally, Figure 5.11 shows how user participation in groups varies with outdegree.

Low-degree nodes tend to be part of very few communities, while high-degree nodes

tend to be members of multiple groups. This implies a correlation between the link

creation activity and the group participation. There is a sharp decline in group

participation for Orkut users with over 500 links, which is inconsistent with the

behavior of the other networks. This result may be an artifact of our partial crawl of

the Orkut network and the resulting biased user sample.

of the network consisting of only the users who are members of G.
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Figure 5.11 : Outdegree versus average number of groups joined by users. Users with
more links tend to be members of many groups.

In general, our observations suggest a global social network structure that is com-

prised of a large number of small, tightly clustered local user communities held to-

gether by nodes of high degree. This structure is likely to significantly impact tech-

niques, algorithms and applications of social networks.

5.10 Discussion

We discuss some implications of our findings from this chapter. Our measurements

indicate that online social networks have a high degree of reciprocity, a tight core

that consists of high-degree nodes, and a strong positive correlation in link degrees

for connected users. What do these findings mean for developers? Alternately, how

should applications for social networks be designed to take advantage of these prop-

erties? Do these properties reveal straightforward attacks on the social structure?

Finally, does it make sense to “optimize” algorithms and applications based upon our
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findings, since these networks are still growing rapidly and any property we assert

now may soon change?

While our findings are likely applicable to many different applications, we concen-

trate on their effect on information dissemination, search, and trust inference.

5.10.1 Information dissemination and search

Social networks are already used as a means for rapidly disseminating information,

as witnessed by the popularity of “hot” videos on YouTube. The existence of a small,

well-connected core implies that information seeded via a core node will rapidly spread

through the entire network. This is both a strength and a weakness, as spam or viruses

could be disseminated this way, as well as important information.

Similarly, searches that proceed along social network links will quickly reach the

core. This suggests that simple unstructured search algorithms could be designed

if the core users were to store some state about other users. In effect, the users in

the core represent “supernodes” in a two-level hierarchy, similar to existing search

protocols for unstructured networks, such as Gnutella.

5.10.2 Trust

Social networking sites are the portals of entry into the Internet for many millions

of users, and they are being used both for advertisement as well as for the ensuing

commerce. Many of these applications, ranging from mail to auctions, implicitly rely

on some form of trust. For example, when a user accepts email from an unknown
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user, she is trusting the other party not to send spam. When a user selects a winning

bidder in an auction, she is trusting the other party to pay the winning amount, and

the winning user is trusting the seller to produce the auctioned item.

In a social network, the underlying user graph can potentially be used as a means

to infer some level of trust in an unknown user [86], to check the validity of a public

key certificate [110], and to classify potential spam [57]. In all of these, trust is

computed as a function of the path between the source and target user.

Our findings have interesting implications for trust inference algorithms. The

tight core coupled with link reciprocity implies that users in the core appear on a

large number of short paths. Thus, if malicious users are able to penetrate the core,

they can skew many trust paths (or appear highly trustworthy to a large fraction

of the network). However, these two properties also lead to small path lengths and

many disjoint paths, so the trust inference algorithms should be adjusted to account

for this observation. In particular, given our data, an unknown user should be highly

trusted only if multiple short disjoint paths to the user can be discovered.

The correlation in link degrees implies that users in the fringe will not be highly

trusted unless they form direct links to other users. The “social” aspect of these

networks is self-reinforcing: in order to be trusted, one must make many “friends”,

and create many links that will slowly pull the user into the core.
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5.11 Summary

We end this chapter with a brief summary of important structural properties of social

networks which we observed in our data.

• The degree distributions in social networks follow a power-law, and the power-

law coefficients for both indegree and outdegree are similar. Nodes with high

indegree also tend to have high outdegree.

• Social networks appear to be composed of a large number of highly connected

clusters consisting of relatively low-degree nodes. These clusters connect to each

other via a relatively small number of high-degree nodes. As a consequence, the

clustering coefficient is inversely proportional to node degree.

• The networks each contain a large, densely connected core. Overall, the network

is held together by about 10% of the nodes with highest degree. As a result,

path lengths are short, but almost all shortest paths of sufficient length traverse

the highly connected core.
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Chapter 6

Network Growth

To date, most measurement and analysis of online social networks (including the

preceding chapter) has focused on the properties of static network snapshots. Despite

the different goals and purposes of the various online social networking sites, the

underlying social networks have been shown to exhibit a surprising number of common

structural features, such as a highly skewed (power-law) degree distribution, a small

diameter, and significant local clustering [6, 105]. This intriguing similarity suggests

that the same underlying network growth processes may be at play in the different

sites.

A proper understanding of these growth processes can provide insights into the

observed network structure, allow predictions of future network growth, and enable

simulation of systems on social networks of arbitrary size. However, most work on

growth processes for large-scale networks has focused on theoretical models, instead of

deriving the growth properties from empirical data. For example, two of the popular

theoretical growth models are the Barabási-Albert model [15], where users connect

to other users in proportion to the destination’s popularity, and the random walk

model [142, 154], where users connect to other users who are already close in the

network.
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In this chapter, we use network growth data from two online social networks and

two other real-world networks to validate existing models of network growth. In

particular, we study how well the empirical data matches the predictions of growth

models that have been proposed. As before, we compare our results to those for

other, well-understood networks in order to ground our analysis. However, we are

well aware that the user graph in social networks is fundamentally different from the

interconnection of web pages or the connections between autonomous systems in the

Internet.

It is important to note that we can only study how well a particular model predicts

the link creation that occurs in the empirical data. We fundamentally do not know

why new links were established; we can only observe the source and destination of

new links. Thus, we cannot ultimately prove or disprove any particular model; we can

only examine the correlation between the observed data and what each model would

predict. Nevertheless, knowing how well different models predict link creation in the

data can improve our understanding of network evolution, and can provide clues as

to the actual underlying processes.

6.1 High-level data characteristics

Table 6.1 shows the high-level statistics of the data we gathered in order to study

the growth of large networks at scale. The network sizes vary by over three orders

of magnitude. Similarly, other metrics, such as the average number of links per node
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and the yearly growth rate also vary greatly between the networks. Despite these

differences, as our analysis later shows, the growth of these complex networks shows

a number of commonalities.

Flickr Wikipedia YouTube-D YouTube-U Internet

Network Type directed directed directed undirected undirected

Days Observed 104 825 36 165 1,281

Resolution day second day day month/week

Symmetric Links 62% 17% 79% - -

Initial Nodes 1,620,392 695,353 1,003,975 1,402,949 9,978

Final Nodes 2,570,535 1,892,691 1,137,638 3,218,658 25,526

Nodes Growth 58% 169% 13% 129% 155%

Growth per Year 242% 54% 145% 525% 31%

Initial Links 17,034,807 6,637,456 4,391,336 6,783,917 29,504

Final Links 33,140,018 39,953,145 4,945,382 18,524,095 104,824

Link Growth 63% 500% 12% 173% 255%

Growth per Year 455% 120% 215% 822% 43%

Table 6.1 : High-level statistics of the network growth data.
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6.2 Growth dominates network evolution

In all of the networks we examined, we found that link addition was significantly more

frequent than link removal. In particular, we found that in Flickr, link additions

exceeded link removals in our data sets at a rate of 2.43:1. Similar characteristics

were observed in the other networks we studied: in YouTube-U, the ratio of link

additions to removals was 3.71:1, and in the Internet, we found that the ratio was

2.06:1. Unfortunately, we did not record removed links for the YouTube-D data set,

and we are unable to estimate the fraction of removed links in Wikipedia due to

the effects of page vandalism (i.e., vandalized pages often have their entire text, and

therefore all of their outgoing links, replaced and then added back).

In summary, in the networks in which we were able to record link removals, we

observed that link addition significantly exceeded link removal. Thus, in the rest of

this chapter, we focus only on how links are added to growing networks, and we leave

examining link removal to future work.

All of the networks we observed showed a high growth rate: normalizing for

different observation periods across the networks reveals an average growth rate of

between 31% and 525% per year in terms of nodes, and a growth rate of between

43% and 822% per year in terms of links. These rapidly growing networks offer us a

unique opportunity to observe new link creation.
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6.3 Reciprocation

We begin by first examining reciprocation, a growth mechanism that exists only in

directed graphs. Reciprocation occurs when the creation of a directed link between

two nodes causes the reverse link be established. Since undirected graphs are, by

definition, symmetric, reciprocation does not make sense in the context of undirected

graphs. Reciprocation has been proposed as an independent growth mechanism for

large-scale directed graphs [56, 173].

Since we do not know why links were established, we rely on the timing between

the creation of the two directed links of a symmetric link to guess whether the creation

of the first causally affected the second. Figure 6.1 shows the distribution of the time

between the establishment of the two links of a given symmetric link in the three

directed graphs (Flickr, YouTube-D, and Wikipedia) that we studied.
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Figure 6.1 : CDF of time between establishment of the two directed links of a sym-
metric link. In both Flickr and Youtube, links are quickly reciprocated.

From Figure 6.1, it is clear that in the two social networks we observed, users
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often respond to incoming links by quickly establishing a reciprocal link back to the

source node. In fact, over 83% of all symmetric links we observed in both Flickr

and YouTube-D were established within 48 hours after the initial link creation. We

hypothesize that this rapid link creation is enabled by the mechanisms on the online

social networking sites: most sites email users of new incoming links and provide an

easy mechanism for creating a reciprocal link in response.

Thus, our data suggests that users tend to quickly reciprocate links, if they recip-

rocate at all. It is therefore highly likely that the establishment of the first link in

these networks prompted the creation of the reciprocal link. The Wikipedia data, on

the other hand, indicates a lower degree of reciprocation; only 30% of the symmetric

links in Wikipedia had both halves of the link created within 48 hours of each other.

Our data suggests that reciprocation is an independent mechanism shaping the

growth of directed networks. The degree of reciprocation is dependent on the net-

work: the two social networks show significant reciprocation, while Wikipedia shows

reciprocation, but to a less significant degree.

6.4 Preferential attachment

Preferential attachment [15], colloquially referred to as the “rich get richer” phe-

nomenon, is a growth model in which new links in a network are attached preferentially

to nodes that already have a large number of links. Under preferential attachment,

the probability that a new link attaches to a given node is proportional to the node’s
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current degree.

To examine whether preferential attachment predicts the observed growth data,

we calculated how the number of new links per day varies with the node degree. If

preferential attachment is taking place, we would expect to see a positive correlation

between the degree of a node and the number of new links it creates or receives.

However, it is important to note that a positive correlation is a necessary but not

sufficient condition for the validity of the preferential attachment mechanism, as other

mechanisms could also result in such a correlation. For example, the “connecting

nearest neighbors” model [154] has been shown to also exhibit such a correlation.
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Figure 6.2 : Log-log plot of outdegree versus number of new links per day. All
networks show strong evidence of preferential attachment.

Figure 6.4 plots this distribution in log-log scale for each of the five networks we

studied. For the three directed graphs, we separately plot the number of new links

created and received, with respect to the node’s current outdegree and indegree.
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6.4.1 Undirected networks

For the two undirected networks, YouTube-U and the AS-level Internet, we show how

the degree of a node correlates with the number of new links per day. We find a strong

positive correlation between the current degree and the number of newly created links

in both of the networks.

6.4.2 Directed networks

For the three directed networks, we separate the preferential attachment model into

two aspects: preferential creation and preferential reception. Preferential creation

describes the mechanism by which nodes create new links in proportion to their

outdegree, and preferential reception describes the mechanism where nodes receive

new links in proportion to their indegree. This distinction is consistent with previously

proposed models of preferential attachment on directed graphs [25].

It is important to understand why we separate preferential attachment into pref-

erential creation and preferential reception for directed networks. Preferential at-

tachment was originally defined for undirected graphs [15], and therefore does not

distinguish between node indegree and outdegree. However, in the directed networks

we study, link creation is very different from link reception. Nodes are in complete

control over their outgoing links, since they decide who they link to, but they are not

in control of their indegree, since it depends upon who they receive links from.

For the three directed networks, Flickr, Wikipedia, and YouTube-D, we separately
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examine how the current outdegree and indegree of a node is related to the number

of newly created and received links per day. Figure 6.4 shows that the outdegree

of nodes is positively linearly correlated with the number of new links created per

node per day. This is a necessary, but not sufficient condition for the validity of

the preferential creation mechanism. Figure 6.4 also shows, for the three directed

networks, that the increase in node indegree is linearly correlated with the current

indegree of the node. Similarly, this is a necessary condition for the validity of the

preferential reception mechanism.

6.4.3 Discussion

Our data shows that a necessary condition for preferential attachment, a positive

correlation between the degree of a node and the number of new links, is present

in all five networks. However, this alone is insufficient to claim that any specific

mechanism (such as the BA model) is the mechanism that is causing the growth, as

a number of different mechanisms could also result in this correlation. In the next

section, we more closely examine the growth data to look for further evidence of

specific growth mechanisms.

6.5 Proximity bias in link creation

In this section, we take a closer look at our growth data to look for evidence of

specific global or local mechanisms that lead to preferential attachment. We look for
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evidence of models based on local rules by focusing on the distance between newly-

linked users. Specifically, we examine the shortest path distance between the source

and destination of newly created links, before a new link is created between them. If,

for example, the BA model is the underlying mechanism, then the observed distance

distribution between users should match that predicted by the model. Otherwise,

if we see a stronger bias towards close users, it may suggest that users follow local,

rather than global, rules for selecting the destinations for new links.

Over 50% of the links in all five networks are between nodes that have, a priori,

some network path between them (the remainder of the observed new links are be-

tween users which are, a priori, disconnected).1 For these new links among already

connected users, Figure 6.5 shows the cumulative distribution of shortest-path hop

distances between source and destination nodes. It reveals a striking trend: over 80%

of such new links in Flickr connect nodes that were only two hops apart, meaning

that the destination node was a friend-of-a-friend of the source node. Similarly, this

fraction is over 42% in YouTube-D, over 50% in Wikipedia, over 45% in YouTube-U,

and over 57% in the Internet topology.

One might wonder whether in small diameter networks like the ones we observe,

this high level of proximity in link establishment is simply a result of preferential

attachment. This is plausible, since the high-degree nodes that preferential attach-

ment prefers tend to be close to many nodes. To test this hypothesis, for each newly

1For directed networks, we only count directed paths.
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created link, we computed the expected distance from the source to the destination, if

the destination is chosen using the BA model. Figure 6.5 also plots this distribution

for each network.

In all five networks that we study, the observed distances between the source and

destination of links shows a significant bias towards nearby nodes, relative to what

the BA model would predict. In fact, in Flickr, Wikipedia, and YouTube-D, we

found that the number of new links connecting 2-hop neighbors in the empirical data

exceeded that predicted by the BA model by a factor of three.

This result shows that while new link formation in our observed networks follows

preferential attachment, the link creation process cannot be explained by the BA

model alone. Nodes are far more likely to link to nearby nodes than the model would

suggest. This result is consistent with the previous observations on static networks,

which showed that the clustering coefficient was significant higher than would be

predicted by the BA model. In the next section, we focus on how nodes choose which

nearby node to link to.

6.6 Mechanisms causing proximity bias

In the previous section, we showed that newly created links show a strong bias towards

nodes which are close together, relative to what the BA model would predict. This

suggests that an alternate mechanism is causing the establishment of new links. In

this section, we take a closer look at the newly created links, and see if the growth
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Figure 6.5 : CDF of distance between source and destination of observed links (Obs).
Also shown is the expected CDF from BA model (BA). The numbers in parenthesis
are the fraction of all new links connecting nodes that had, a priori, some path between
them. All networks show a proximity bias that is not predicted by the BA model.
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data matches the expected properties of other proposed mechanisms.

In particular, we examine network growth models that are known to have a

stronger bias towards proximity than preferential attachment. To make the anal-

ysis tractable, we focus on new links that occur between nodes that are two hops

apart. Such links account for over 45% of the links in all networks. We consider the

BA model for preferential creation, combined with five different proposed mechanisms

for selecting the destination of a newly established link:

• Random selection (RS), where a node choses the destination randomly from its

set of two-hop neighbors. This mechanism serves as a baseline for evaluating

the other mechanisms.

• Random two-hop walk (RW), where a node performs a random two-hop walk to

find the destination [154].

• Preferential selection (PS), where a node choses from its set of two-hop neigh-

bors preferentially according to the nodes’ indegrees. This is similar to the BA

model, except that a node only considers its two-hop neighbors [93].

• Common neighbors (CN), where a source makes a weighted random choice

among its set of two-hop neighbors. The likelihood that a given candidate

is chosen is proportional to the number of neighbors the source shares with the

candidate [114].

• Jaccard’s coefficient (JC), where a source makes a weighted random choice
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among its set of two-hop neighbors. Here, the likelihood that a given candidate

is chosen is proportional to the number of neighbors the source shares with the

candidate divided by the candidate’s indegree [93].

We examined newly established links in all networks that connect nodes that were

previously two hops apart. We then calculated the expected indegree distribution of

nodes that would have been selected using each of the five mechanisms above. We

then compared the results to the distribution in the empirical data. Figure 6.6 plots

these distributions for each network.

From Figure 6.6, we can see that no one mechanism closely matches the empirical

data in all networks. In fact, in two of the networks (Flickr and Wikipedia), the

random walk mechanism most closely matches the observed data. However, in the

other three networks, the results are less conclusive. To better quantify how well the

various mechanisms predict the selected destination of new links, we calculated the

accuracy of each mechanism, in the same manner as previous studies [93]. Thus, for

each newly created link, we calculated the fraction of time each mechanism correctly

predicted the selected destination. The results are shown in Table 6.2, relative to the

random selection model.

The accuracy results in Table 6.2 shows that no one model dominates in terms

of accuracy across different networks. However, closely examining the results reveals

that the two mechanisms that take into account the indegree of the destination (RW

and PS) do tend to have higher accuracy. This suggests either that different mecha-
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Figure 6.6 : CDF of nodes receiving new links by indegree. Plots are shown for
observed data (Obs), and simulated mechanisms: random selection (RS), random 2-
hop walk (RW), preferential selection (PS), common neighbors (CN), and Jaccard’s
coefficient (JC). The observed data does not match any one mechanism, suggesting
that different mechanisms are at play in different networks.
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RS RW PS CN JC

Flickr 0.17% 2.0 1.1 1.2 1.2

Wikipedia 0.15% 2.9 2.9 1.3 0.7

YouTube-D 0.35% 1.6 1.5 1.1 1.0

YouTube-U 0.59% 1.7 1.3 1.1 1.4

Internet 0.53% 1.9 4.1 1.1 0.5

Table 6.2 : Prediction accuracy of two-hop link creation mechanisms relative to the
baseline random selection mechanism. While no one mechanism appears to be the
most accurate across all networks, Random Walk and Preferential Selection tend to
have higher accuracy.

nisms may be at play in different networks, or that the actual mechanism driving link

creation is not among the ones we evaluated, or that the actual mechanism is a com-

plex combination of some of the mechanisms we tested. This result is not surprising,

though, as each of the networks represents a different system, and it is unlikely that

one single mechanism would describe the link creation behavior in all of them.

6.7 Discussion

In this chapter, we used empirical growth data from multiple large-scale complex

networks to test if previously proposed growth models actually are at play in these

networks. We have chosen to focus on the well-known BA model model because it

is simple and has been suggested as the underlying growth mechanism in different

contexts. Clearly, the BA model leads to global degree distributions of the type
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observed in many diverse networks, and absent other data, it is an attractive choice

for researchers to explain static snapshots of crawled networks.

6.7.1 Is proximity fundamental?

We believe that some notion of proximity is inherent in the link creation processes

underlying large networks. As a network grows larger, it is increasingly unlikely

that nodes are influenced by knowledge of the global degree ranking when choosing

their neighbors. In many networks (in particular, many social networks), it may not

even be possible to discover the global degree ranking of nodes, knowledge of which

is required for pure preferential attachment. Other mechanisms that rely on global

properties are equally unlikely because of technical and policy issues with computing

global metrics.

In the networks we have examined, the bias towards proximity can be explained

by considering the node discovery mechanisms available to users and the factors that

constrain them. In the social networks (YouTube and Flickr), the primary mechanism

available to users for exploring the network is to walk their neighborhood. This

might explain our observation in Flickr and YouTube that there is a much stronger

bias in link creation towards nearby nodes than would be predicted by preferential

attachment alone, yet there still is a bias towards high-degree nodes (see Table 6.2).

On Wikipedia, semantically closer pages are likely to be proximal in the network,

leading to a proximity bias in link creation.
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The Internet AS graph is fundamentally different because each AS consists of many

different routers and there is a significant cost associated with creating new links. A

model for AS link formation is given in [27], and our observations are consistent with

the reasoning therein. The AS graph is naturally “tiered” with many small stub

ASes interconnected by a few large backbone providers (who also tend to have high

connectivity/degree). AS link creation is often constrained by financial, technical,

and geographical factors: for most stub ASes, links to far away ASs tend to be costly

(especially if the geographic distance is large) and are unlikely to be profitable since

the upstream provider already provides transit to reach these ASes. Such links only

make sense in specific cases where business relationships mandate a specific inter-AS

peering. Thus, stub ASes tend to connect to their nearby backbone AS providers,

and the resulting AS graph shows proximity bias coupled with strong preferential

selection.

6.7.2 Proximity mechanisms

While our growth data cannot assert which mechanism are at play when links are

formed, it can be used to disprove existing hypotheses. Perhaps unsurprisingly, we

find that the simplest mechanisms (such as the BA model) are not sufficient to explain

our observations. In particular, we have shown that to explain the empirical growth

data, we must include some notion of proximity in the growth models. While prox-

imity has been previously suggested as a factor in link creation in large networks, we
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believe we are the first to provide empirical date from multiple large-scale networks

to support this conjecture.

The analysis in the previous section revealed some insights into how proximity

affects the growth of complex networks. While our results are not conclusive, it

appears that growth models that take into account the indegree of the destination

(e.g. Preferential Selection and Random Walk) match the data more closely than

other models. Moreover, Preferential Selection outperforms Random Walk only for

the Internet AS graph.

6.8 Summary

In this chapter, we closely examined network growth data from five different networks

and compared the empirical data to the predictions of previously proposed growth

mechanisms. We end this chapter with a brief outline of our most important findings.

• We found evidence of reciprocation as a mechanism in directed networks. We

found that users tend to often create a reciprocal link in response to an incoming

link, explaining the high levels of symmetry observed in social networks with

directed links.

• We also found that nodes tend to create and receive links in proportion to the

outdegree and indegree, which is consistent with preferential attachment (or

preferential creation and preferential reception in directed networks).

• However, we found that the BA model alone did not accurately predict the
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proximity bias among nodes connected by new links in any of the empirical

data sets. All networks showed a stronger bias towards proximity between new

sources and destinations than would have been predicted by the BA model.

• Upon closer examination of the newly created links links, we found than no sin-

gle proximity model we examined appears to accurately predict this proximity

across all networks. However, we did find that models that consider network

proximity as a factor in link creation predict the empirical data better then

preferential attachment. This suggests that further research into growth mech-

anisms is necessary.
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Chapter 7

Network Communities

The concept of a community is central to online, as well as offline, social networks. A

community is a subset of the users in a social network that is more tightly intercon-

nected than the overall network [118]. Communities are interesting for a variety of

reasons. For example, users in a community tend to interact frequently, often share

interests, and trust each other to some extent. Therefore, communities are useful, for

instance, to guide information dissemination and acquisition, to recommend or intro-

duce people who would likely benefit from direct interaction, and to express access

control policies.

Prior works have proposed algorithms for automatically detecting communities in

social networks [13,31,58,99,118,131,153]. However, the algorithms have never been

tested on real online social networks at scale. In this chapter, we use fine-grained

data from a university online social network to study the effectiveness of existing

algorithms for detecting communities, and we propose a new algorithm to overcome

the observed limitations of existing approaches.

Specifically, we make three contributions. First, we collect detailed data about

a large university social network and analyze the structure of communities in the

network. Our data covers almost 4,000 students and alumni of Rice University taken
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from the Facebook [49] social network. For each student, we gather attributes like

major(s) of study, year of matriculation, and dormitory, to see if communities in the

network align with these attributes. We find that users tend to form links to other

users who share the same attributes, and that users who share certain attributes

define strong communities in the social network.

Second, we examine how well existing techniques can detect communities. We find

that existing approaches often perform poorly on our data set, sometimes returning

a large part of the network (or the whole network) as a community. We demonstrate

that this poor performance is due to the use of community-rating metrics that are

biased towards large communities.

Third, we propose and evaluate a new algorithm that can accurately infer mem-

berships of multiple, potentially overlapping communities, when given information

about a small subset of the community members. In practice, this means that if even

as few as 20% of users provide community information to social networking sites, the

remaining members of the community can be determined from the social network

alone with high accuracy.

In the following sections, we describe the data we use for our community analysis.

We then examine the data set, looking at the correlation between attributes and

the links and communities in the network. Finally, we evaluate previously proposed

approaches and propose and evaluate new approach for detecting communities in the

network
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7.1 Data sets used

In this chapter, we use the Facebook data set from Rice University, described in

Section 4.5. We partition our data set into a two subsets representing different parts

of the Rice University network, which have different properties. The first group we

use is the current undergraduates. This subset contains 1,233 users connected with

86,416 links, for an average degree of 70.1. The second group we use is the current

graduate students. This subset contains 548 users connected with 6,512 links, for

an average degree of 11.8. We examine these two parts of the network separately,

since we have different attributes sets for the undergraduates and graduate students

and they represent largely distinct parts of the network. In fact, only 1,455 links are

present between undergraduates and graduate students.

7.2 Attributes in the network

We first make two observations about how the structure of the social network is

correlated with the attributes of users. First, we note that users are significantly

more likely to be friends with other users who share their attributes. In some cases,

the likelihood is as high as 10-fold more than that would be expected if links were

placed randomly. Second, we observe that this affinity for links between similar users

leads to communities of users in the network that are centered around attributes.

Each of these observations is described in detail below.
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7.2.1 Friends with common attributes

Our first observation is that users are statistically much more likely to be friends with

other users who share their attributes. In order to show this, we calculated for each

attribute a (such as college or matriculation year)

Sa =
|{(i, j) ∈ E : s.t. ai = aj}|

|E|
(7.1)

where ai represents the value of attribute a for user i, and E represents the set of

all links. Sa therefore represents the fraction of links for which users share the same

value of attribute a. Finally, we divided this by what would be expected in a graph

with a similar distribution of attributes but with the links placed randomly between

users. The resulting value, which we call affinity, ranges from 0 to ∞ and represents

the ratio of the fraction of links between attribute-sharing users, relative to what

would be expected in a random graph. Thus, an affinity greater than 1 indicates that

links are positively correlated with user attributes.

Table 7.1 shows the affinity of the various attributes for the undergraduates and

graduate students at Rice. We observe that for all attributes, a significant affinity is

observed, showing that links in the Rice network are correlated with attributes. It is

interesting to note that certain attributes are stronger than others: for example, grad-

uate students have a much strong affinity for other students in the same department

when compared to other students in the same matriculation year. In some cases, the

affinity is as high as 10, implying that users connected by a link are 10 times more

likely to share an attribute that would be expected in a random graph. In summary,
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Users Attribute Affinity

undergrads

college 5.77

major 2.37

year 1.93

grads

department 9.98

school 4.09

year 1.81

Table 7.1 : Affinity values for various attributes of students at Rice. Links are
correlated with numerous user attributes.

we have observed that links in the Rice network are strongly correlated with attribute

values, suggesting that communities of users centered around common attributes may

be present.

7.2.2 Attribute-based communities

Given that we have observed a correlation between user attributes and links, it is

natural to see if the users who share a similar attribute form communities, or dense

clusters, in the network. Note that the previous observation is a necessary, but

not sufficient, condition for attribute-based communities to exist, since users with

common attributes may be linked together but may not form a dense community. In

order to investigate whether attribute communities are present in our network, we

artificially divide the network into communities based on user attributes, and then

quantify the strength of that division into communities using modularity [118].
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Undergraduate students

Table 7.2 shows the modularity for the undergraduate population when partitioned

according to residential college, major, and matriculation year. Also shown is the

modularity of the partitionings that are obtained when multiple attributes are used.

The results show a significant modularity for the communities defined by residen-

tial college and matriculation year – a relatively high Q of 0.385 is observed when

partitioning by residential college, and a Q of 0.259 is seen when dividing by year.

However, the modularity of the communities defined by major is almost 0, indicating

that no community structure exists based on academic major. Overall, these results

indicate that users who share the same college or matriculation year form tightly-knit

communities in the social network.

Attributes Communities Modularity

college, major, year 660 0.021

college, major 488 0.025

year, major 270 0.039

major 163 0.046

college, year 36 0.249

year 4 0.259

college 9 0.385

Table 7.2 : Modularity values for communities defined by various attributes of under-
graduates at Rice. College and matriculation year reveal strong community structure.

With some knowledge of the actual social network at Rice, the above results are
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not unexpected. Undergraduate students are randomly assigned to a residential col-

lege upon matriculation, and they remain members of that college for the duration

of their undergraduate studies. Thus, it is natural that strong communities form

around residential colleges. Additionally, the strong communities among undergrad-

uate students of the same matriculation year are not surprising. Incoming students

attend an orientation week together, are mostly assigned to share dormitory rooms

with students of their year, and tend to spend time in courses with students of their

year. Thus, it is also natural that a community structure exists among undergradu-

ates of the same matriculation year. Finally, the lack of a strong community structure

around majors can be explained by the fact that Rice undergraduates obtain liberal

arts education (taking courses from many departments), and they often do not choose

majors until the end of their sophomore year.

Graduate students

We now turn our focus to the graduate student population. Table 7.3 shows the

modularity of the graduate student population when partitioned according to de-

partment, academic school, and matriculation year.1 The results show a significant

modularity for the communities based on department – in fact, a Q of 0.586 is ob-

served. A similar modularity is observed when partitioning according to school – this

is because each department is a member of exactly one school, and the partitioning

1Note that graduate students are not assigned to residential colleges, so that attribute is disre-

garded here.
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according to school ends up being a coarser version of the communities defined by

department. Similar to the undergrads, a Q of 0.187 is also seen for the communities

defined by matriculation year. This indicates a very strong community structure for

the graduate students based on department, and a weak community structure based

on matriculation year.

Attributes Communities Modularity

year 11 0.187

department, school, year 139 0.294

department, year 139 0.294

school, year 45 0.304

school 9 0.583

department, school 36 0.586

department 36 0.586

Table 7.3 : Modularity values for communities defined by various attributes for grad-
uate students at Rice. Departments form strong communities.

The results for the graduate student population are also not unexpected. Graduate

students are accepted into a specific department at the beginning of their studies,

and usually spend their entire tenure in the same department. Thus, the very strong

association with the department is not surprising. Moreover, the variable length of

graduate programs and the greater tendency of graduate students to interact across

seniority levels explains why the partitioning according to matriculation year has a

weak community structure.
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7.2.3 Summary

In both the Rice undergraduate and graduate student populations, we observe that

users with similar attributes tend to be friends in the social network. Moreover,

we observe a significant community structure, indicated by a high modularity value,

for the communities defined by users who share certain attributes. We also observe

that multiple overlapping community structures exist. For the undergraduates, we

observe significant modularity when partitioning according to residential college and

matriculation year. For the graduate students, we observe significant modularity

when partitioning according to department and a weaker modularity according to

matriculation year.

7.3 Detecting communities

In the previous section, we observed that the undergraduate network, and to a lesser

extent the graduate network, contained communities that were correlated with mul-

tiple attributes. For the undergraduates, the partitionings according to college and

matriculation year both showed significant correlation with the communities in the

network. For the graduates, partitionings according to department and year showed

similar behavior. We now consider the use of automatic clustering algorithms to

detect a specific community among the multiple communities that exist.

To do so, we split the problem into two parts: first, if partial membership in-

formation about all communities in the network is known, we examine the problem
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of detecting a specific community partitioning. Second, if partial membership infor-

mation about only one community is known, we look at the problem of detecting a

specific community given a partial membership list.

7.3.1 Global community detection

We assume that some fraction of the user population provides information about

which communities they belong to. For example, some users on Facebook list their

college and matriculation year in their profile. This information can be used to aid

the automatic clustering algorithms.

To evaluate whether this information can aid in identifying multiple community

structures, we modified the Clauset [32] algorithm to take in attributes of a subset of

the users. Instead of starting with every user in their own cluster, the algorithm pre-

assigns users with the same attribute into the same cluster. We then run the algorithm

as normal, effectively “seeding” it with the users who reveal their attributes. Finally,

we calculate the modularity of the resulting partitioning, and then compare it to the

partitioning based on the attributes of all users.

To measure how similar these two community structures are, we use the normalized

mutual information metric [53]. This metric is calculated as

−2
∑

i

∑

j xijlog(
xijN

xi.x.j
)

∑

i xi.log(xi.

N
) +

∑

j X.jlog(
x.j

N
)

(7.2)

where x is a square matrix whose dimension is the number of communities detected.

Each element xij represents the number of nodes in attribute-defined community i
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that appeared in the detected community j. x.i and xi. denotes sum over column

i, and sum over row i respectively, and N is the number of nodes in the graph. At

a high level, the metric ranges between 0 and 1, with 0 representing no correlation

between the two community structures, and 1 representing a perfect match.
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Figure 7.1 : Normalized mutual information versus the fraction of users who reveal
their community for Rice undergraduates. Revealing more information naturally leads
to partitionings with higher correlations, especially for the college and year attributes.
This result shows that different attributes can be accurately inferred with as few as
20% of users revealing their attributes.

Figure 7.1 plots the results of this experiment for the undergraduates, by showing

the normalized mutual information for each attribute. Separate lines are plotted for

each attribute, and the correlation value is with respect to the attribute that users are

revealing. Two trends can be seen in this graph. First, we observe that both college

and year quickly lead to community structures with significant correlation. In fact,

when just 20% of users reveal their college or year, we can infer the attributes for the

remaining users with over 80% accuracy. Second, this is not the case for major of

study. However, this result is not surprising, as we observed in the previous section
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that communities are not formed around users with common majors. Overall, this

experiment shows that multiple attributes can be inferred globally when as few as

20% of the users reveal their attribute information.
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Figure 7.2 : Normalized mutual information versus the fraction of users who reveal
their community for Rice graduate students.

Figure 7.2 plots the results of this experiment for the Rice graduate students.

Similar to the undergrads, we observe that certain attributes correspond to commu-

nities that can be detected with high accuracy. For example, if as few as 5% of the

students reveal their department or school, we can infer the department or school

for the remaining students with approximately 60% accuracy. However, this is not

the case for the matriculation year attribute. We observed in the previous section

that matriculation years only correspond to weak communities, so this result is not

unexpected.
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7.3.2 Local community detection

We now look at detecting communities on a local scale. This is different from the

problem in the previous section, where we assumed that partial information about

all users in the network is known. Instead, for example, we may know that a subset

of five users all live in the same dormitory, and we wish to determine the other users

(for which we do not have any information) who also live in that dormitory. To

detect these communities, we extend the previously proposed approaches for local

community detection to take a seed set of nodes.

While exploring local community detection, we found that previous approaches

performed well when detecting certain attributes, but did not perform well on others.

For example, we found that the algorithm of Luo [99] could infer the members of a res-

idential college at Rice, but was not able to infer the members of larger communities,

such as all students in the same matriculation year. Thus, we propose a new method

for detecting a single community, based on the metric of normalized conductance. We

first describe this new metric below, followed by a description of our algorithm, and

finally evaluate the algorithms on our Rice data set.

Normalized conductance

We first define a metric that rates the quality of a single community (as opposed to

modularity, which rates the community structure of a partitioning of a graph into

a collection of communities). To provide a measure for the quality of a community,
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we propose a metric based on the widely adopted metric conductance [71]. Let G =

(V, E) denote a graph, let A ⊂ V be a subset of the vertices that forms a community,

and let B = V \ A. Let us also define eAB to be the number of edges between A

and B and eAA as the number of edges within A. The conductance of A is then

traditionally defined as eAB/eAA. Therefore, a small value of conductance denotes

a strong community, as the community would be tightly linked internally, with very

few links to the rest of the graph.

However, this definition of conductance is not a good measure for the “goodness”

of a community, as it is biased towards large communities. For example, if we place

all the vertices in the graph in a single community, the conductance would be 0, which

does not provide any information about the community formed.

Hence, we propose a new metric called normalized conductance. To derive nor-

malized conductance, we first define the value K of community A as

K =
eAA

eAA + eAB

(7.3)

This value is similar to conductance, except that it ranges between 0 and 1. A

measure close to zero indicates very poor community structure, and a measure close

to 1 indicates very good community structure with many more links within A than

to the outside. However, this metric is still not perfect, as very large communities

are naturally biased towards having many more edges within the graph (high eAA).

Thus, we define the normalized conductance C for a community A as K minus the

expected value of K for a random graph with the same communities A and B.
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To calculate the expected value of K for a random graph, we need to calculate the

expected values of eAA and eAB for a graph with the same community division and

degree distribution, but with the links placed without regard for the communities.

We define eA = eAA +eAB and eB = eBB +eAB, with eA denoting the number of edges

that reach vertices within A, and eB giving the same quantity for B. In a random

graph, we would expect that eXY = eXeY . Thus, our normalized conductance metric

C can be written as

C =
eAA

eAA + eAB

−
eAeA

eAeA + eAeB

(7.4)

The metric C ranges between -1 and 1. Similar to modularity, a value of 1 indicates a

significant community structure in A, a value of 0 indicates no more community struc-

ture than a random graph, and a value of -1 indicates less community structure than

a random graph. One particularly useful property of this definition of conductance

is that it is comparable across communities of different sizes and densities. Previous

definitions generally only use the ratio of intra-community links to inter-community

links, which is naturally biased towards very large communities.

Algorithm

We now describe our algorithm for detecting a single community, using the normalized

conductance metric C. We assume the algorithm is given as input a subset of users

S in a community and the social network graph G = (V, E). The algorithm then

returns the other members of the community. Similar to the approach that was taken
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by Luo [99], we use a greedy approach to maximize the normalized conductance. We

initially divide the graph into two components A and B, with A = S initially. At each

step, we select a user v ∈ V in B that upon adding v to A yields the highest increase

in the normalized conductance C for A. We repeat this process, adding users to A,

until no remaining user would produce an increase in the normalized conductance C

for A. At this point, we stop and return the community A as the result.

The primary difference between our method and the previous approaches is the

use of a metric that is weighted against a random graph. We found that the metrics

used by previous approaches are all biased towards large communities. For example,

the metric used by Luo et al. [99] is based on the ratio between the number of

intra-community links to the number of inter-community links. As a community

grows larger, this value naturally increases; in fact, it becomes infinite if an entire

connected component is viewed as a community. Thus, these approaches often have

trouble detecting large communities in the network, as they often proceed to detect

the entire graph as a community. By weighting our metric against a random graph,

we can detect both the small-scale and large-scale communities that exist.

Evaluation

To see how well our algorithm and others perform, we evaluate the performance

along two axes. Assume that each algorithm takes as input a subset S of users with

attribute H , and the social network graph. The algorithm then returns a set of users
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R, representing the other members it believes also have attribute H , based on the

community structure in the network. We define the recall to be

|R ∩ H|

|H \ S|
(7.5)

representing the fraction of the remaining community members that the algorithm

returns. Similarly, we define the precision to be

|R ∩ H|

|R|
(7.6)

representing the fraction of the returned users who are actually in the community.

Thus, an ideal algorithm would have a recall of 1 (returning all of the remaining users)

as well as a precision of 1 (only returning users who are actually in the community).

We now evaluate our algorithm on the Rice data set along with the algorithms of

Luo [99], Bagrow [13], and Clauset [31]. First, we examine how well they perform on

the undergraduate population by providing the algorithms with varying-size subsets of

the students with common attributes such as college, matriculation year, and major.

For each attribute (i.e., each college, each major), we select 20 random subsets of

users of each size. We then evaluate how well the algorithms perform when given

each of these random subsets as input.

For fair comparison with the other algorithms, a few parameters and modifica-

tions were required. First, none of the other algorithms accept as input a set of seed

nodes; we naturally extended them to start with a set of nodes rather than a single

node. Second, the algorithm proposed by Clauset does not specify a stopping con-

dition; instead, it requires the user to specify the number of nodes to be added to
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the community. Thus, we utilise the stopping condition proposed by Bagrow [13] for

the Clauset algorithm, based on p-strong communities.2 We evaluate the algorithms

of Clauset and Bagrow with values of p = {0.75, 0.8, 0.85, .., 1.0}, as suggested, and

select the one with the lowest number of inter-community edges (representing the

“best” community). Third, the algorithm of Lou et al. performs iterative adds and

deletions, and could therefore remove the original seed nodes from the resulting com-

munity. In the case of a single seed node, the authors view the removal of the seed

node from the returned community as a failure of the algorithm to detect a com-

munity. In order to handle this case for our extended version that accepts a set of

seed nodes, we imposed the constraint that we only consider the algorithm of Luo to

have found a community if 50% or more of the original seed nodes were present in

the resulting community. If not, we do not consider the algorithm to have found a

community.

Detecting undergraduate communities

We now present the results for inferring different attributes for the undergraduate

students. For these results, we average over all possible values of each attribute (such

as all colleges) into the recall and precision data presented in Figure 7.3. Thus, we

feed each algorithm x% of every college and calculate the recall and precision of the

2A community is p-strong when a fraction p of nodes within the community satisfy the criteria

that they have more neighbors inside the community than outside
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result. We repeat this experiment five times for each college and fraction revealed,

and then average over all colleges to obtain the data in Figure 7.3 (a).
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Figure 7.3 : Recall and precision of single community detection for Rice undergradu-
ates for multiple algorithms. Good performance is observed for our algorithm (Norm.
Cond.) for college and year; detecting users with the same major performs poorly
due to the low correlation with communities in the network. The algorithm of Luo
performs well at inferring college but does not perform well for inferring matriculation
year.

As a detailed example, Figure 7.4 presents the recall and precision for each of the

matriculation years as different number of users are revealed. A number of interesting

observations can be made about the results. First, the performance varies across the

different matriculation years; the freshmen and sophomores appear to be the easiest to

detect, followed by the juniors and seniors. Second, detecting all of the matriculation

years shows good performance once 20% to 30% of the users is revealed. Third, note

that the precision naturally deteriorates once very high fractions of the users in each
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year are revealed. This is because the precision is defined based on the number of

unrevealed users, which becomes much smaller as significant fractions are revealed.

We now turn back to Figure 7.3 and discuss each attribute in detail.
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Figure 7.4 : Recall and precision for matriculation year community detection for Rice
undergraduates for our algorithm. Individual lines are shown for each matriculation
year. Certain values of user attributes are easier to detect than others.

Colleges: The results show that colleges can be inferred with very high recall

and precision by both our algorithm and the algorithm of Luo when as few as 10%

of the students in the college are known. For example, when 20% of the members

of a single college are provided to the algorithms, both our algorithm at that of Luo

can infer over 80% of the remaining members of that college with over 95% accuracy.

Figure 7.5 shows this in detail for our algorithm, focusing on the performance when
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between 1% and 16% of the college members are provided. The algorithms of Clauset

and Bagrow both perform rather poorly at detecting colleges: they each often return

a large part of the network as belonging to the college, resulting in a very low precision

score.
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Figure 7.5 : Detail on recall and precision for college inference for Rice undergraduates
with our algorithm.

Years: However, for inferring matriculation years, all algorithms have significant

recall, but only our algorithm has good precision. In fact, the other algorithms tend

to detect the entire graph as a community, which leads to the low precision. Again,

we believe that this poor performance is a function of the metrics that the other

algorithms use. Since they essentially try to maximize the ratio of intra-community

links to inter-community links, they occasionally end up returning the whole graph.



144

Majors: Finally, we observe that none of the algorithms are able to infer major;

all have extremely low precision. This result is expected, though, since we observed in

the previous section that majors do not form significant communities in the network.

Detecting graduate student communities

We now turn to evaluate our approach on the graduate student network. Figure 7.6

shows how the recall and precision vary as different fractions of the department,

school, and matriculation year of graduate students are provided. Inferring the de-

partment and school of students shows good performance for all algorithms except for

Bagrow’s (as we observed with the undergraduates, the algorithm of Bagrow tended

to return a large portion of the network as a community). We find that knowing

20% of the user attributes is sufficient to infer most of the remaining users with high

accuracy. However, inferring matriculation year does not perform as well for any

algorithm, having low recall and precision. Again, the poor performance at detecting

matriculation years can be explained by the data in Section 7.2, which shows that

the matriculation years form weak communities in the social network.

7.4 Summary

We began this section by asking whether the multiple overlapping community struc-

tures that exist in online social networks can be detected. We demonstrated that

existing techniques can be “seeded” with attributes provided by users to detect mul-
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Figure 7.6 : Recall and precision for single community detection for Rice graduate
students. Good performance is observed for department and school; much weaker
performance is seen for year.

tiple partitionings according to different attributes. In fact, we found that with as

few as 20% of users with known attributes, the remaining users can be classified

with over 80% accuracy. Moreover, we proposed a new algorithm that can detect a

community when given as input only a few users in the community. We found that

this algorithm is able to detect communities in both the undergraduate and graduate

student networks when given as few as 10% of the community. Thus, we found that

with partial information about users, we are able to detect the multiple community

structures that exist with high accuracy.

Our work has a number of implications and uses. For example, many of the

popular online social networks could directly apply our algorithm in order to detect
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communities in the network. This would enhance the user experience on the sites, as

communities are often used for guiding search results, for suggesting users who may

benefit from interaction, and for grouping users.

However, our findings also raise interesting questions about the nature of privacy

in online social networks. In particular, almost all privacy mechanisms available to

users today are based on access control: users can specify which other users are able

to view the content or information they upload. Our results show, though, that even

information that is not provided by users can be inferred from the user’s location in

the network. Thus, a user’s privacy is not only a function of their actions, but also

the actions of their friends and community members.
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Chapter 8

Ostra: Leveraging Relationships

Internet-based communication systems such as email, instant messaging (IM), voice-

over-IP (VoIP), online social networks, and content-sharing sites allow communication

at near zero marginal cost to users. Any user with an inexpensive Internet connection

has the potential to reach millions of users by uploading content to a sharing site

or by posting messages to an email list. This property has democratized content

publication: anyone can publish content, and anyone interested in the content can

obtain it.

Unfortunately, the same property can be abused for the purpose of unsolicited

marketing, propaganda, or disruption of legitimate communication. The problem

manifests itself in different forms, such as spam messages in email; search engine

spam in the Web; inappropriately labeled content on sharing sites such as YouTube;

and unwanted invitations in IM, VoIP, and social networking systems.

Unwanted communication wastes human attention, which is one of the most valu-

able resources in the information age. The noise and annoyance created by unwanted

communication reduces the effectiveness of online communication media. Moreover,

most current efforts to automatically suppress unwanted communication occasion-

ally discard relevant communication, reducing the reliability of the communication
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medium.

Existing approaches to thwarting unwanted communication fall into three broad

categories. First, one can target the unwanted communication itself, by automati-

cally identifying such communication based on its content. Second, one can target

the originators of unwanted communication, by identifying them and holding them

accountable. Third, one can impose an upfront cost on senders for each communi-

cation, which may be refunded when the receiver accepts the item as wanted. Each

of these approaches has certain advantages and disadvantages, which we discussed in

Chapter 3.4.

In this chapter, we describe a method that exploits the difficulty in establishing

and maintaining relationships in social networks to impose a cost on the senders of un-

wanted communication in a way that avoids the limitations of existing solutions. Our

system, Ostra, (i) relies on existing social networks to connect senders and receivers

via chains of pairwise relationships; (ii) uses a pairwise, link-based credit scheme that

imposes a cost on originators of unwanted communications without requiring sender

authentication or global identities; and (iii) relies on feedback from receivers to clas-

sify unwanted communication. Ostra ensures that unwanted communication strains

the originator’s relationships, even if the sender has no direct relationship with the

ultimate recipient of the communication. A user who continues to send unwanted

communication risks isolation and the eventual inability to communicate.

The relationships (or social links) that Ostra uses exist in many applications. The
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links can be explicit, as in online social networking sites, or implicit, as in the links

formed by a set of email, IM, or VoIP users who include each other in their contact

lists. Ostra can use such existing social links as long as acquiring and maintaining

a relationship requires some effort. For example, it takes some effort to be included

in someone’s IM contact list (making that person’s acquaintance); and it may take

more effort to maintain that status (occasionally producing wanted communication).

With respect to Ostra, this property of a social network ensures that an attacker can-

not acquire and maintain arbitrarily many relationships or replace lost relationships

arbitrarily quickly.

Ostra is broadly applicable. Depending on how it is deployed, it can thwart

unwanted email or instant messages; unwanted invitations in IM, VoIP, or online

social networks; unwanted entries or comments in blogging systems; or inappropriate

and mislabeled contributions to content-sharing sites such as Flickr and YouTube.

8.1 Ostra strawman

In this section, we describe a strawman design of Ostra. The design is appropriate for

trusted, centralized communication systems in which users have strong identities (i.e.,

each individual user has exactly one digital identity). We discuss the basic properties

of this design in the context of two-party communication (e.g., email and IM), multi-

party communication (e.g., bulletin boards and mailing lists), and content-sharing

sites (e.g., YouTube and Flickr). Section 8.2 describes a refined design that removes
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the need for strong identities, because such identities are difficult to obtain in practice.

8.1.1 Assumptions

The strawman design is based on three assumptions.

1. Each user of the communication system has exactly one unique digital identity.

2. A trusted entity observes all user actions and associates them with the identity

of the user performing the action.

3. Users classify communication they receive as wanted (relevant) or unwanted

(irrelevant).

Assumption 1 would require a user background check (e.g., a credit check) as part of

the account creation process, to ensure that a user cannot easily create multiple iden-

tities; this assumption will be relaxed in Section 8.2. Assumption 2 holds whenever

a service is hosted by a trusted Web site or controlled by a trusted tracker compo-

nent; the trusted component requires users to log in and associates all actions with

a user. We sketch a decentralized design that does not depend on this assumption in

Section 8.5.

Producing communication can mean sending a email or chat message; adding an

entry or comment to a blog; sending an invitation in an IM, VoIP, or social networking

system; or contributing content in a content-sharing site. Receiving communication

can mean receiving a message or viewing a blog entry, comment, or search result.
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Figure 8.1 : Diagram of (a) the original communication system S, and (b) the com-
munication system with Ostra. The three phases of Ostra — (1) authorization, (2)
transmission, and (3) classification — are shown.

Typically, a user considers communication unwanted if she feels the content was

not worth the attention. A user considers a blog entry, comment, or content object

as unwanted if she considers the object to be inappropriate for the venue (e.g., site,

group, or blog space) it was placed in or to have inappropriate search tags, causing

the object to appear in response to an unrelated search.

8.1.2 System model

Figure 8.1 shows how Ostra interacts with a given communication system S. Ostra

is a separate module that runs alongside the existing communication system. With

Ostra, communication consists of three phases.

Authorization

When a sender wishes to produce a communication, she first passes the communica-

tion to Ostra. Ostra then issues a token specific to the sender, recipient, and commu-
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nication. If the sender has previously sent too much unwanted communication, Ostra

refuses to issue such a token and rejects the communication.

Transmission

Ostra attaches the token to the communication and transmits it using the existing

communication mechanism. On the receiving side, Ostra accepts the communication

if the token is valid. The communication is then provided to the recipient. Note that

Ostra is not involved in the actual transmission of the communication.

Classification

The recipient classifies the communication as either wanted or unwanted, according

to her personal preferences. This feedback is then provided to Ostra. Finally, Ostra

makes this feedback available to the sender.

Note that in message-based communication systems, Ostra would normally be

needed only for communication among users who do not regularly communicate

with each other. Therefore, as an optimization, it is assumed that users maintain

a whitelist of other users from whom they are willing to accept communication with-

out endorsement from Ostra. For convenience, this whitelist could be automatically

derived from the list of a user’s direct friends in the social network.
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8.1.3 User credit

Ostra uses credits to determine whether a token can be issued. Each user is assigned

a credit balance, B, with an initial value of 0. Ostra also maintains a per-user balance

range [L, U ], with L ≤ 0 ≤ U , which limits the range of the user’s credit balance (i.e.,

L ≤ B ≤ U at all times). We denote the balance and balance range for a single user

as BU
L . For example, if a user’s state is 3+6

−5, the user’s current credit balance is 3, and

it can range between –5 and 6.

When a token is issued, Ostra requires the sender to reserve a credit and the

receiver to reserve a place holder for this credit in their respective credit balances.

To make these reservations, the sender’s L is raised by one, and the receiver’s U is

lowered by one. If these adjustments would cause either the sender’s or the receiver’s

credit balance to exceed the balance range, Ostra refuses to issue the token; otherwise,

the token is issued. When the communication is classified by the receiver, the range

adjustments are undone. If the communication is marked as unwanted, one credit is

transferred from the sender to the receiver.

Let us consider an example in which both the sender’s and the receiver’s initial

balances are 0+3
−3. When the token is issued, the sender’s balance changes to 0+3

−2,

and the receiver’s balance changes to 0+2
−3, representing the credit reservation. Let

us assume that the communication is classified as unwanted. In this case, a credit is

transferred from the sender to the receiver; the receiver’s balance becomes 1+3
−3, and

the sender’s becomes −1+3
−3.
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This algorithm has several desirable properties. It limits the amount of unwanted

communication a sender can produce. At the same time, it allows an arbitrary amount

of wanted communication. The algorithm limits the number of tokens a user can

acquire before any of the associated communication is classified; thus, it limits the

total amount of potentially unwanted communication a user can produce. Finally,

the algorithm limits the number of tokens that can be issued for a specific recipient

before that recipient classifies any of the associated communication; thus, an inactive

or lazy user cannot cause senders to reserve a large number of credits, which would

be bound until the communication were classified.

8.1.4 Credit adjustments

Several issues, however, remain with the algorithm described so far. When a user’s

credit balance reaches one of her credit bounds, she is, in effect, banned from produc-

ing (in the case of the lower bound) or receiving (in the case of the upper bound) any

further communication. What can cause a legitimate user’s credit balance to reach

her bounds? Note that on the one hand, a user who receives unwanted communication

earns credit. On the other hand, even a well-intentioned user may occasionally send

communication to a recipient who considers it unwanted and therefore lose credit.

Across all users, these effects balance out. However, unless a user, on average, re-

ceives precisely the same amount of unwanted communication as she generates, her

credit balance will eventually reach one of her bounds. As a result, legitimate users
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can find themselves unable to communicate.

To address this problem, credit balances in Ostra decay towards 0 at a constant

rate d with 0 ≤ d ≤ 1. For example, Ostra may be configured so that each day, any

outstanding credit (whether positive or negative) decays by 10%. This decay allows

an imbalance between the credit earned and the credit lost by a user. The choice of

d must be high enough to cover the expected imbalance but low enough to prevent

considerable amounts of intentional unwanted communication. As we show as part

of Ostra’s evaluation, a small value of d is sufficient to ensure that most legitimate

users never exceed their credit range.

With this refinement, Ostra ensures that each user can produce unwanted com-

munication at a rate of at most

d ∗ L + S (8.1)

where S is the rate at which the user receives communication that she marks as

unwanted.

A denial of service attack is, however, still possible. Colluding malicious users

can inundate a victim with large amounts of unwanted communication, causing the

victim to acquire too much credit to receive any additional communication. For these

users, the rate of decay may be too low to ensure that they do not exceed their credit

balances. To prevent such attacks, we introduce a special account, C, that is not

owned by any user and has no upper bound. Users with too much credit can transfer

credit into C, thereby enabling them to receive further communication. Note that
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Operation Net Change in System Credit

User joins system 0, as user’s initial credit balance is 0

Wanted communication sent 0, as no credit is exchanged

Unwanted communication sent 0, as credit is transferred between users

Daily credit decay 0, as total credit was 0 before decay

Table 8.1 : Operations in Ostra, and their effect on the total system credit. No
operation alters the sum of credit balances.

the credit transferred into C is subject to the usual credit decay, so the total amount

of credit available to active user accounts does not diminish over time. Additionally,

users can only deposit credit into C; no withdrawals are allowed.

Finally, there is an issue with communication failures (e.g., dropped messages)

and users who are offline for extended periods. Both may cause the sender to reserve

a credit indefinitely, because the receiver does not classify the communication. The

credit decay does not help in this situation, because the decay affects only the credit

balance and not the credit bounds. Therefore, Ostra uses a timeout T , which is

typically on the order of days. If a communication has not been classified by the

receiver after T , the credit bounds are automatically reset as though the destination

had classified the communication as wanted. This feature has the added benefit that

it enables receivers to plausibly deny receipt of communication. A receiver can choose

not to classify some communication, thus concealing its receipt.
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Action Cost Reward

Sending
Send wanted comm.

Send unwanted comm. 1 credit

Classifying

Classify as wanted Sender likely to send more

Classify as unwanted 1 credit, throttle sender

Misclassify as wanted Encourage sending more

Misclassify as unwanted Discourage sending more 1 credit

Abuse

Don’t use token Ties up credit for T

Don’t classify Ties up credit for T

Drop incoming comm. 1 credit

Table 8.2 : Incentives for users of Ostra. Users are incentivized to send only wanted
communication, to classify communication correctly, and to classify received commu-
nication promptly. Marking an incoming communication as unwanted has the effect
of discouraging the sender from sending additional communication, as the sender is
informed of this and loses credit. Alternatively, marking an incoming communication
as wanted costs the sender nothing, allowing the sender to send future communication
with increased confidence.
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8.1.5 Properties

Ostra’s system of credit balances observes the following invariant:

At all times, the sum of all credit balances is 0

The conservation of credit follows from the fact that (i) users have an initial zero

balance when joining the system, (ii) all operations transfer credit among users, and

(iii) credit decay affects positive and negative credit at the same rate. Table 8.1

details how each operation leaves the overall credit balance unchanged. Thus, credit

can be neither created nor destroyed. Malicious, colluding users can pass credits

only between themselves; they cannot create additional credit or destroy credit. The

amount of unwanted communication that such users can produce is the same as the

sum of what they can produce individually.

We have already shown that each user can produce unwanted communication at a

rate of no more than d ∗L + S. We now characterize the amount of unwanted subset

of the user population can produce. Let us examine a group of users F . Owing to

the conservation of credit, users in this group cannot conspire to create credit; they

can only push credit between themselves. Thus, the users in F can send unwanted

communication to users not in F at a maximal rate of

|F | ∗ d ∗ L + SF (8.2)

where SF is that rate at which users in F (in aggregate) receive communication from

users not in F that they mark as unwanted.
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The implication of the above analysis is that we can characterize the total amount

of unwanted communication that non-malicious users can receive. Let us partition

the user population into two groups: group G are “good” users, who rarely send

unwanted communication, and group M are “malicious” users, who frequently send

unwanted communication. Now, the maximal rate at which G can receive unwanted

communication from M is

|M | ∗ d ∗ L + SM (8.3)

which implies that, on average, each user in G can receive unwanted communication

at a rate of

|M |

|G|
∗ d ∗ L +

SM

|G|
(8.4)

However, we expect SM to be small as users in G rarely send unwanted communi-

cation. Thus, the rate of receiving unwanted communication is dominated by static

system parameters and by the ratio between the number of good and malicious users.

Moreover, this analysis holds regardless of the amount of good communication that

the malicious users produce.

Finally, Ostra has an incentive structure that discourages bad behavior and re-

wards good behavior. Table 8.2 shows a list of possible user actions and their costs

and rewards.
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8.1.6 Multi-party communication

Next, we show how the design can be used to support moderated multi-party com-

munication, including mailing lists and content-sharing sites. The existing design

generalizes naturally to small groups in which all members know each other. In this

case, communication occurs as a series of pairwise events between the originator and

each of the remaining group members.

In moderated groups, which are usually larger, a moderator decides on behalf

of the list members if communication submitted to the group is appropriate. In this

case, Ostra works exactly as in the two-party case, except that the moderator receives

and classifies the communication on behalf of all members of the group.

Thus, only the moderator’s attention is wasted by unwanted communication, and

the cost of producing unwanted communication is the same as in the two-party case.

However, an overloaded moderator may choose to increase the number of credits

required to send to the group, to mitigate her load by discouraging inappropriate

submissions.

Large content-sharing sites usually have content-rating systems or other methods

for flagging content as inappropriate. Ostra could be applied, for instance, to thwart

the submission of mislabeled videos in YouTube, by taking advantage of the existing

“flag as inappropriate” mechanism. When a user’s video is flagged as inappropriate,

it is reviewed by a YouTube employee; if it is found to be mislabeled, the submission

is classified as unwanted for the purposes of Ostra.
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Extending Ostra to work with unmoderated multi-party communication systems

is beyond the scope of this thesis.

8.2 Ostra design

The strawman design described in the previous section requires strong user identities:

that is, each individual user is guaranteed to have at most one unique digital identity.

Such identities are not practical in many applications, as they require a background

check as part of the account creation process. Such checks may not be accepted by

users, and as far as we know, few services that require such a strong background check

have been widely adopted on the Internet.

In this section, we refine the design of Ostra so that it does not require strong user

identities. It is assumed that the communication system ensures that each identity is

unique, but an individual user may sign up multiple times and use the system under

different identities at different times. Our refined design leverages relationships to

preserve Ostra’s properties despite the lack of strong user identities. We still assume

that a trusted entity such as a Web site hosts the communication service and runs

Ostra. Later, in Section 8.5, we sketch out how Ostra could be applied to decentralized

services.

The refined design of Ostra replaces the per-user credit balances with balances

that are instead associated with the links among users in a trust network. We show

that this mapping preserves the key properties of the strawman design, even though
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Ostra no longer depends on strong identities. We begin by defining a trust network

and then describe how Ostra works with weak identities.

8.2.1 Trust networks

A trust network is a graph G = (V, E), where V is the set of user identifiers and

E represents undirected links between user identifiers who have a trust relationship.

Examples of trust networks are the user graph of an email system (where V is the

set of email addresses and E is the set of email contacts) and online social networks

(where V is the set of accounts and E is the set of friends). For convenience, we shall

refer to two users connected by an edge in the trust network as friends.

For the purposes of Ostra, a trust network must have the property that there

is a non-trivial cost for initiating and maintaining links in the network. As a re-

sult, users in the trust network cannot acquire new relationships arbitrarily fast and

cannot maintain an arbitrarily large number of relationships. We do not make any

assumptions about the nature or the degree of trust associated with a relationship.

Finally, the trust network must be connected, meaning that there is a path of

trust links between any two user identities in the network. Previous studies [26, 105]

have shown that the user graphs in existing social networks tend to be dominated by

a single large component, implying that the networks are largely connected.

Ostra assumes that the users of a communication system are connected by a trust

network and that Ostra has a complete view of this network.
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8.2.2 Link credit

Because a user may have multiple identities, we can no longer associate a separate

credit balance with each identity. Otherwise, a malicious user could gain additional

credit and send arbitrary amounts of unwanted communication simply by creating

more identities. Instead, Ostra leverages the cost of forming new links in trust net-

works to enforce a bound on each user.

Specifically, each link in the trust network is assigned a link credit balance B, with

an initial value of 0, and a link balance range [L, U ], with L ≤ 0 ≤ U and L ≤ B ≤ U .

These are analogous to the user credit balance and range in the original design. We

denote the balance and balance range for a link X ↔ Y from X’s perspective as
X→Y

BU
L .

For example, if the link has the state
X→Y

3+6
−5 , then X is currently owed 3 credits by Y,

and the balance can range between –5 and 6.

The link balance represents the credit state between the user identities connected

by the link. Ostra uses this balance to decide whether to issue tokens. It is important

to note that the credit balance is symmetric. For example, if the link balance on the

X ↔ Y link is
X→Y

1+3
−2 , then X is owed one credit by Y, or, from Y ’s perspective, Y owes

X one credit (the latter can be denoted
Y →X

−1+2
−3).

We map the user credit balance in the strawman design to a set of link credit

balances on the user’s adjacent links in the trust network. For example, as shown

in Figure 8.2, if a user has two links in the trust network, the user’s original credit

balance is replaced with two separate credit balances, one on each link. However, we
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Figure 8.2 : Mapping from (a) per-user credits to (b) per-link credits.

cannot compute a user balance by taking the sum of the link balances – in fact, the

concept of a user balance is no longer useful because a user can create many identities

and establish links between them. Instead, we introduce a new mechanism for credit

transfer that uses link balances, rather than user balances, to bound the amount of

unwanted communication that users can send.

We now describe this mechanism for transferring credits. For simplicity, we first

describe the case of communication between users who are friends in the trust network.

We then generalize the credit transfer mechanism to the case in which two arbitrary

users wish to communicate.

Communication among friends

As in the strawman design, a user who wishes to send communication needs to obtain

a token during the authorization phase. For example, a user X may request to

send communication to another user Y , a friend of X’s. Ostra determines whether

transferring this credit would violate the link balance range on the X ↔ Y link, and

if not, it issues a signed token. The token is then included in X’s communication to
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Figure 8.3 : Link state when X sends communication to friend Y . The state of the
link balance and range is shown (a) before the token is issued, (b) after the token
is issued, (c) if Y marks the communication as unwanted, and (d) if Y marks the
communication as wanted or if the timeout occurs.

user Y .

As in the strawman design, Ostra allows users to have multiple outstanding to-

kens by reserving credits for each potential transfer. In the example in the previous

paragraph, Ostra raises the lower bound for the X ↔ Y link by one. This single

adjustment has the effect of raising X’s lower bound and lowering Y ’s upper bound,

because the lower bound on the X ↔ Y link can be viewed as the upper bound on

the Y ↔ X link. Figure 8.3 shows the state of the X ↔ Y link during each stage

of the transaction. By adjusting the balance this way for outstanding tokens, Ostra

ensures that the link balance remains within its range regardless of how the pending

communication events are classified.

Later, in the classification stage, user Y provides Ostra with the token and the

decision whether X’s communication was wanted. The balance range adjustment that

was performed in the authorization phase is then undone. Moreover, if Y reports that

the communication was unwanted, Ostra adjusts the balance on the X ↔ Y link by

subtracting one, thereby transferring a credit from X to Y . Thus, if the previous
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state of the link was
X→Y

0+3
−3 , the final state would be

X→Y

−1+3
−3, meaning X owes Y one

credit. Finally, Ostra automatically cancels the token after a specified timeout T .

Communication among non-friends

So far, we have considered the case of sending communication between two friends in

the trust network. In this section, we describe how Ostra can be used for communi-

cation between any pair of users.

When a user X wishes to send communication to a non-friend Z, Ostra finds a

path consisting of trust links between X and Z. For example, such a path might be

X ↔ Y ↔ Z, where X and Y are friends in the trust network, and Y and Z are also

friends. When this path is found, the range bounds are adjusted as before, but this

occurs on every link in the path. For example, if X wishes to send communication to

Z, Ostra would raise the lower bound of both the X ↔ Y and the Y ↔ Z links by

one. Figure 8.4 shows a diagram of this procedure. If this adjustment can be done

without violating any link ranges, Ostra issues a token to X.

Similar to the transfer between friends, the token is then attached to X’s commu-

nication to Z. Later, in the classification stage, Z provides Ostra with the token and

the decision whether the communication was wanted. Now, the range adjustments

on all the links along the path are undone. If the communication was unwanted, the

credit is transferred along every link of the path; Figure 8.4 (c) shows the result of

this transfer.
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Figure 8.4 : Link state when X sends communication to non-friend Z is shown (a)
before the token is issued, (b) after the token is issued, (c) if Z marks the communica-
tion as unwanted, and (d) if Z marks the communication as wanted or if the timeout
occurs.

It is worth noting that the intermediate users along the path are largely indifferent

to the outcome of the transfer, as any credit transfer will leave them with no net

change. For example, consider the scenarios shown in Figure 8.4 (c) and (d). In

either case, the total amount of credit that intermediate user Y has with all her

friends is the same regardless of the outcome. If Z marks the communication as

unwanted, as shown in Figure 8.4(c), Y owes a credit to Z, but X now owes a credit

to Y . Ostra allows users to transfer credits along trust paths such that intermediate

users along the path are indifferent to the outcome.

Generalization of Ostra strawman

One can show that Ostra generalizes the strawman design from the previous section.

Recall the account C that is owned by the trusted site. Now, we construct a trust

network in which each user has a single link to C, with the link balance and balance

range equal to their user balance and balance range in the strawman design. Ostra

with such a trust network has the same properties as the strawman design. To see this,
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note that sending communication from X to Y requires raising the lower bound on the

X ↔ C link and lowering the upper bound on the Y ↔ C link, which is equivalent to

adjusting X’s and Y ’s user balance ranges in the same manner. Figure 8.5 (b) shows

an example of this generalization for the specific set of user accounts in Figure 8.5 (a).

More importantly, Ostra preserves the conservation of credit that was present in

the strawman system. This can be derived from the fact that credit is associated with

links instead of users. Any credit in Ostra is naturally paired with a corresponding

debt: for example, if the state of a link is
X→Y

−1+3
−2, then X owes Y one credit, but Y

is owed a credit by X. Thus, all outstanding credit is balanced by outstanding debt,

implying that credit cannot be created or destroyed.

The conservation of credit holds for each link independently, and is therefore in-

dependent of the trust network topology (Figure 8.5 (c) shows an example of a trust

network with a different topology). As a result, the analysis of the strawman sys-

tem in Section 8.1.5 applies to the full version of Ostra. For example, malicious,

colluding users cannot conspire to manufacture credit; the amount of unwanted com-

munication that such users can produce together is the sum of what they can produce

independently.

8.2.3 Security properties

We now discuss the security properties of Ostra’s refined design in detail. Ostra’s

threat model assumes that malicious users have two goals: sending large amounts
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Figure 8.5 : Generalization of per-user credit accounting to per-link credit accounting.
Ostra with per-user credit (shown in (a)) can be expressed as per-link credit over a
star topology (shown in (b)), with the central site C as the hub. The addition of links
(shown in (c)) does not change the properties.

of unwanted communication, and preventing other users from being able to send

communication successfully. Strategies for trying to send additional unwanted com-

munication include signing up for multiple accounts and creating links between these

accounts, as well as conspiring with other malicious users. Strategies for trying to

prevent other users from communicating include targeting a specific user by sending

large amounts of unwanted communication and attempting to exhaust credit on spe-

cific links in the trust network. In this section, we describe how Ostra handles these

threats.

Multiple identities

One concern is whether users who create multiple identities (known as Sybils [44])

can send additional unwanted communication. Ostra naturally prevents such users

from gaining additional credit.

To send unwanted communication to another user, a user must eventually use one

of her “real” links to a different user, which has the same effect as if the user only
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had a single identity. To see this, assume a user with a set of multiple identities

M = {M1, M2, ..., Mn} is sending to a different user U . Now, regardless of how the

links between the identities in M are allocated, any path between Mi and U must

contain a link Mj ↔ V , where V /∈ M . If this property does not hold, then U ∈ M ,

which is a contradiction.

Thus, using per-link balances has the effect that the total credit available to a

user no longer depends on the number of identities a user has. Instead, the credit

available depends on the number of links the user has to other users. Figure 8.6

shows a diagram of how Ostra prevents users with multiple identities from sending

additional unwanted communication.

Ostra allows users to create as many identities as they wish but ensures that

they cannot send additional unwanted communication by doing so. Malicious users

may attempt to use multiple Sybil identities to create multiple links to a single user.

Although they may succeed occasionally, these links require effort to maintain and

the malicious user, therefore, cannot create an unbounded number of them.

Figure 8.6 : Diagram of how Ostra handles various attacks: (a) a normal user, (b)
multiple identities, and (c) a network of Sybils. The total amount of credit available
to the user is the same.



171

Targeting users

Another concern is whether malicious users could collectively send a large amount of

unwanted communication to a user, thus providing this victim with too much credit

to receive any additional messages. This attack is possible when the attacking users

collectively have more links to legitimate users than the victim, as exhausting the

credit on one of the victim’s links requires the malicious users exhaust the credit on

one of their own links.

However, the victim has a simple way out by forgiving some of the debt on one

of her links. If a user finds that she has too much credit on all of her links, she can

forgive a small amount of debt from one of her friends. This is the same mechanism

as transferring credit to the overflow account (C) described in Section 8.1. To see this

equivalence, consider the star-topology trust network constructed in Section 8.2.2. In

that case, a user transferring credit to the overflow account is essentially forgiving

debt on their only link (to C). This mechanism does not allow malicious users to

send additional unwanted communication to the victim, as the victim only forgives

debt to her direct friend (i.e., the victim’s friend does not repeat the process).

Targeting links

One final concern is whether malicious users could prevent large numbers of innocent

users from communicating with each other by exhausting the credit on certain links

in the trust network. If successful, such an attack could prevent a group of users from



172

sending to the rest of the user population.

To exhaust the credit on specific links, attacking users would need both knowledge

of the trust network topology and some control over trust path selection. Because the

path selection is performed by the trusted site, the attacking users have the choice of

only the destination and not the path. Even if we assume a powerful attacker who

has control over the path selection, the trust network would need to have a topology

that is susceptible to such an attack. For example, a barbell topology would be

susceptible, as the link connecting the two halves of the network could be exhausted.

Analysis of current online social networks (which are typical trust networks) shows

that these have a very dense core [105]. We show in Section 8.4 that the structure of

these networks makes it unlikely that such an attack would succeed on a large scale.

8.3 Discussion

In this section, we discuss some issues associated with deploying Ostra.

8.3.1 Joining Ostra

Fundamentally, Ostra exploits the trust relationships in an existing social network of

users to thwart unwanted communication. As a result, users are expected to acquire

and maintain a certain number of social links to be able to communicate.

To join Ostra, a new user must be introduced to the system by an existing Ostra

user. Requiring this form of introduction ensures that the trust network among users
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is connected and that each new user has at least one trust link. Thus, Ostra can be

used only in conjunction with a “invitation-only” social network.

Users with few links in the trust network are more susceptible to credit exhaus-

tion (whether accidental or malicious). Thus, there is an incentive for users to obtain

and maintain a sufficient number of trust links. Establishing additional links can be

done via the communication system after the user has joined Ostra. Link invitations

are treated as normal messages, so users who attempt to send unwanted link invi-

tations are blocked in the same manner as users who send other forms of unwanted

communication.

8.3.2 Content classification

Ostra requires that recipients classify incoming communication as either wanted or

unwanted. Providing explicit feedback is a slight burden on the user, but it may

be a small price to pay for a system that responds to each user’s preferences and

is free of the misclassifications that are common in current content-based filtering

systems [5]. Moreover, the feedback can often be derived implicitly from a user’s

actions; for instance, deleting a message probably indicates that the message was

unwanted, whereas archiving or replying to the message strongly indicates that it

was wanted.

As an optimization in message-based communication systems, a user could main-

tain a whitelist indicating users from whom communication is immediately and un-
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conditionally classified as wanted. In this case, Ostra would need to operate only

among users who are not on each other’s whitelists.

8.3.3 Parameter settings

Ostra limits the amount of pending communication that a user can have, where a

pending item of communication is one that was generated by the user but not yet

classified by the receiver. In Section 8.4, we show that Ostra’s design parameters (L,

U , and d) can be chosen such that most legitimate users are not affected by the rate

limit, while the amount of unwanted communication is still kept very low.

The L parameter controls the number of unclassified items of communication a

user can have at any one time. A large L allows many outstanding messages but also

admits the possibility that a considerable amount of this outstanding communication

would be unwanted. In contrast, an L close to 0 ensures that very little unwanted

communication is received, at the cost of potentially rate-limiting legitimate senders.

The d parameter represents the rate at which users who have sent unwanted commu-

nication in the past are “forgiven”. Setting d too high allows additional unwanted

communication, whereas setting it too low may unduly punish senders who have in-

advertently sent unwanted communication in the past. In the Section 8.4, we show

that the conservative settings of L=–3 and d=10% per day provide a good trade-off

in practice.
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8.3.4 Compromised user accounts

If a user’s account password is compromised, the attacker can cause the user to run

out of credit by sending unwanted communication. However, the amount of unwanted

communication is still subject to the same limits that apply to any individual user.

Moreover, a user would quickly detect that her account has been compromised, be-

cause she would find herself unable to generate communication.

8.4 Evaluation

In this section, we present an experimental evaluation of our Ostra prototype. Using

data from a real online social network and an email trace from our institute, we

show how Ostra can effectively block users from sending large amounts of unwanted

communication.

8.4.1 Experimental trust network

To evaluate Ostra, we used a large, measured subset [105] of the social network found

in the video-sharing Web site YouTube [167]. We extracted the largest strongly

connected component consisting of symmetric links from the YouTube graph, which

resulted in a network with 446,181 users and 1,728,938 symmetric links.

Strictly speaking, the YouTube social network does not meet Ostra’s requirements,

because there is no significant cost for creating and maintaining a link. Unfortunately,

trust-based social networks that do meet Ostra’s requirements cannot be easily ob-
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tained due to privacy restrictions. For instance, in the LinkedIn [95] professional

networking site, users “vouch” for each other; link formation requires the consent

of both parties and users tend to refuse to accept invitations from people they do

not know and trust. But, unlike YouTube, it is not possible to crawl the LinkedIn

network.

However, we were able to obtain the degree distribution of users in the LinkedIn

network. We found that both YouTube and LinkedIn degree distributions follow the

power-law with similar coefficients. We used maximum-likelihood testing to calculate

the coefficients of the YouTube and LinkedIn graphs, and found them to be 1.66 and

1.58 (the resultant Kolmogorov-Smirnov goodness-of-fit metrics were 0.12 and 0.05,

suggesting a good fit). This result, along with the previously observed similarity in

online social networks’ structure [105], leads us to expect that the overall structure

of the YouTube network is similar to trust-based social networks like LinkedIn.

Despite their structural similarity, the YouTube social network differs from the

LinkedIn trust network in one important aspect: some users in YouTube collect many

links (one user had a degree of over 20,000!). The maximum degree of users in actual

trust-based social networks tends to be much smaller. Anthropological studies [47]

have shown that the average number of relationships a human can actively maintain in

the real world is about 150 to 200. Because the amount of unwanted communication

a user can send in Ostra is proportional to her degree in the trust network, the results

of our YouTube-based evaluation may understate the performance of Ostra on a real
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trust-based network.

8.4.2 Experimental traffic workload

We were unable to obtain a communication trace of the same scale as the social net-

work we use. Therefore, we had to make some assumptions about the likely commu-

nication pattern within the social network. We expect that users communicate with

nearby users much more often than they communicate with users who are far away in

the social network. To validate this hypothesis, we collected an email trace from the

Max Planck Institutes for Informations and Software Systems, consisting of two aca-

demic research institutes with approximately 200 researchers. Our anonymized email

trace contains all messages sent and received by the mail servers for 100 days, and

the anonymized addresses in the trace are flagged as internal or external addresses.

Similar to previous studies [28,143], we extracted a social network from the email

data by examining the messages sent between internal users. Specifically, we created

a symmetric link between users who sent at least three emails to each other. We

filtered out accounts that were not owned by actual users (e.g., helpdesk tickets and

mailing lists), resulting in a large strongly connected component containing 150 users

and covering 13,978 emails.

We then examined the social network distance between sender and receiver for all

messages sent between these 150 users. Figure 8.7 compares the resulting distance

distribution with one that would result had the senders selected random destinations.
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Figure 8.7 : Cumulative distribution (CDF) of distance between sender and receiver
for our email trace. The observed data show a strong bias toward proximity when
compared to randomly selected destinations.

We found that the selection of senders had a very strong proximity bias: over 93%

of all messages were sent to either a friend or a friend of a friend, compared to the

expected 14% if the senders were chosen randomly. Thus, we expect that in practice,

most communication in Ostra is directed to nearby users, significantly reducing the

average path lengths in the trust network.

8.4.3 Setting parameters

We also used the email trace to determine the appropriate settings for the Ostra

parameters L and U . To do this, we examined the rate at which users sent and

received messages. The trace contains 50,864 transmitted messages (an average of

3.39 messages sent per user per day) and 1,003,819 received messages (an average of

66.9 messages received per user per day). The system administrators estimated that

the incoming messages in the email trace consisted of approximately 95% junk mail.
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Clearly, most of these receptions would not occur in an actual Ostra deployment.

However, we could not access the spam filter’s per-message junk mail tags, so we

randomly removed 95% of the incoming messages as junk.

To determine how often a given setting of L and U would affect Ostra, we simulated

how messages in the email trace would be delayed due to the credit bounds. We ran

two experiments with different assumptions about the average delay between the time

when a message arrives and the time when the receiving user classifies the message.

We first simulated casual email users who classify messages after six hours, and we

then simulated heavy email users who classify messages after two hours.

Table 8.3 presents the results of these two experiments with L=–3 and U=3. We

found that messages are rarely delayed (less than 1.5% of the time in all cases), and

that the average delay is on the order of a few hours. We also found that the delays

for receiving messages are more significant than the delays for sending messages. We

believe this is an artifact of our methodology. Over 98% of the delayed messages were

received by just 3 users. In practice, it is likely that these users (who receive a high

volume of relevant email) check and classify their email very frequently. This effect

would reduce the frequency and magnitude of delays, but our simulation does not

account for it.
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Average classification Fraction Delay (h)

delay (h) delayed Avg. Med. Max.

Sending
2 0.38% 2.2 1.9 7.6

6 0.57% 6.1 5.3 23.6

Receiving
2 1.3% 4.1 3.2 13.2

6 1.3% 16.6 14.7 48.6

Table 8.3 : Message delays in sending and receiving with L=–3 and U=3. The delays
are shown for heavy email users (2 hour average classification delay) and casual email
users (6 hour average classification delay).

8.4.4 Effectiveness of Ostra

In this section, we simulate deployments of Ostra in a message-based system (such as

the messaging service on Flickr) and in a content-sharing system (such as YouTube).

We evaluate Ostra under three traffic workloads: Random, where users select destina-

tions randomly; Proximity, where users select destinations with the distribution that

was observed in Section 8.4.2; and YouTube, where users send to a single YouTube

account in the network. We show that in all cases, Ostra effectively bounds the rate at

which malicious users can send unwanted communication while not impeding wanted

communication.

Expected performance

Ostra limits the amount of unwanted communication that can be sent. A single user

user can send unwanted communication at a rate of at most d ∗ L ∗D + S , where D
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is the degree of the user. Thus, the rate at which a malicious user can send unwanted

communication is in direct proportion to her degree. As the d or L parameters are

increased, we expect the rate of unwanted communication to increase accordingly.

Additionally, as the proportion of malicious users in the network increases, we expect

the overall rate of unwanted messages to increase.
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Figure 8.8 : Amount of unwanted communication received by good users as the
number of attackers is varied. As the number of attackers is increased, the number
of unwanted messages delivered scales linearly.

Preventing unwanted communication

In this section we verify experimentally that Ostra performs as described in Sec-

tion 8.4.4. Unless otherwise noted, the experiments were run with 512 randomly

chosen attackers (approximately 0.1% of the population), L=–3, U=3, and d=10%

per day. Each good user sent 2 messages and each attacker sent 500 messages.

To evaluate Ostra in the context of a content-sharing site, we modeled Ostra

working in conjunction with YouTube. For these experiments, we configured the
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network so that uploading a video involves sending a message via Ostra to a single

‘YouTube’ account in the network. An existing, well-connected user (1,376 links) in

the core of the network was selected to represent this account.

We first show that the rate at which users receive unwanted communication varies

with the number of attacking users. In Figure 8.8, we present the results of experi-

ments in which we vary the number of attackers in the network between 1 and 4,096

users (0.0002% to 1% of the network). We examine the rate at which unwanted mes-

sages were received by non-attacking users, along with the expected bound derived

from the equations in Section 8.4.4.

As can be seen in Figure 8.8, Ostra effectively bounds the number of unwanted

messages in proportion to the fraction of users who send unwanted communication.

Even with 1% of the network sending unwanted messages, each legitimate user receives

only 0.22 unwanted messages per week, translating to approximately 12 unwanted

messages per year.

Next, we explore Ostra’s sensitivity to system parameter settings and other con-

ditions. Important parameters in Ostra are the credit bounds L and U for each link.

If these bounds are set too high, attackers can send many messages before being cut

off. However, if these bounds are set too low, a legitimate user could be temporarily

prevented from sending messages. Figure 8.9 shows how the rate of unwanted message

delivery is affected by the maximal credit imbalance across a link. As the maximum

allowed imbalance increases, the amount of unwanted communication received by
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Figure 8.9 : Amount of unwanted communication received by good users as the
maximum credit imbalance per link is varied.

good users increases, as expected.

Finally, we examine the sensitivity of Ostra to the false positive rate of legitimate

users’ message classification. In other words, if users incorrectly mark other good

users’ messages as unwanted, how often are users blocked from sending message? We

show how this probability of false classification affects the proportion of messages

that cannot be sent in Figure 8.10. As can be seen, even a high false positive rate

of 30% results in only a few blocked messages. This resiliency results from the rich

connectivity of the social network (i.e., if one link becomes blocked, the users can

route through other friends), and the fact that the false positive rate affects all users

equally.

In the case of the content-sharing site, because all paths intersect, good users are

blocked more quickly as the amount of content that is marked as unwanted increases.

For example, when the false classification rate is 64%, about 40% of messages cannot
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Figure 8.10 : Proportion of messages delivered versus false classification probability
for wanted messages.

be sent. However, it seems very unlikely that the moderator of a sharing site would

misclassify content at such a high rate.

Resilience to link attacks

In a potential security attack discussed in Section 8.2, malicious users attempt to

exhaust credit on a set of links inside the trust network, i.e., links other than the

attackers’ adjacent links. If successful, this attack could disrupt communication for

innocent users. To evaluate whether a real-world social network is susceptible to this

attack, we performed a min-cut analysis of the YouTube social network.

Assuming uniform link weights of one, we calculated the min-cuts1 between 3,000

randomly selected pairs of users. We then looked for cases in which the set of links

1A min-cut is a minimal set of links that, if removed, partitions two users; note that several such

cuts can occur between two users.
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involved in a min-cut for a given pair of users differed from the set of links adjacent to

either one of the two users. Such a min-cut could be the target of an attack, because

the attackers could exhaust credit on this set of links before they exhaust the credit

on their own links.
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Figure 8.11 : Proportion of 3,000 random user pairs for which the min-cut was not
adjacent to one of the users, as a function of the lower of the two users’ degrees.
The fraction decreases as the users become well-connected, suggesting that a trust
network with well-connected users is not vulnerable to link attacks.

Figure 8.11 plots the proportion of user pairs for which the min-cut was not

adjacent to one of the users, as a function of the lower of the two users’ degrees.

The results suggest that vulnerable links inside the network occur rarely, and that

their frequency decreases with the degree of user connectivity. Therefore, the better

connected users are in the trust network, the more robust the network is to link

attacks. Because users in Ostra already have an incentive to maintain a certain

number of links for other reasons, one would expect that a real Ostra trust network

would not be vulnerable to link attacks.
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8.5 Decentralizing Ostra

The design of Ostra we have described so far assumes the existence of a trusted,

centralized component that maintains the trust network and credit state. This design

is suitable for centralized communication systems, such as those hosted by a Web site.

Peer-to-peer communication systems with a centralized “tracker” component can also

use this design. However, completely decentralized systems like SMTP-based email

cannot use it. In this section, we briefly sketch out a design of Ostra that works

without any trusted, centralized components.

8.5.1 Overview

In the absence of a trusted, centralized entity, both the trust network and the credit

state must be distributed. We assume that each participating user runs an Ostra

software agent on her own computer. This Ostra agent stores the user’s key material

and maintains secure network connections to the Ostra agents of the user’s trusted

friends. The two Ostra agents adjacent to a trust link each store a copy of the link’s

balance and bounds.

Ostra authorization requires a route computation in the trust network. Because

user trust networks can be very large (many online social networks have hundreds of

millions of users), the path computation must be scalable. Moreover, it is assumed

that users wish to keep their trust relationships private. In a centralized design, such

privacy can be ensured easily. In the decentralized design, this concern complicates
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the distributed route computation, as no user has a global view of the trust network.

In the sections below, we sketch out distributed designs for the route computation,

for maintaining link balances and for ensuring that users follow the Ostra protocol.

8.5.2 Routing

Routing in large networks is a well-studied problem. We use a combination of existing

techniques for distributed route discovery in large trust networks.

We divide the problem into two cases. To find routes within the local neighborhood

of a user (e.g., all users within three hops), we use an efficient bloom filter-based [21]

mechanism. To discover longer paths, we use landmark routing [152] to route to the

destination’s neighborhood and then use bloom filters to reach the destination. Each

user creates and publishes a bloom filter (representing her local neighborhood) and a

landmark coordinate (representing her location in the global network).

A user’s bloom filter represents the set of users within the two-hop neighborhood of

the user’s trust network. Thus, given a destination’s bloom filter, a user can determine

whether any of her friends are within the destination’s two-hop neighborhood. If

so, the user has found the next hop toward the destination. The solution works

on arbitrary connected graphs. However, the approach is most efficient in sparse

graphs in which the three-hop neighborhood accounts for a small percentage of the

total network. Many real-world trust networks, such as social networks, have this

property [105].
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For long paths, we use landmark routing to reach the destination’s neighborhood.

A small subset of the user population is chosen as landmarks, and every user in the

network determines her hop distance and the next hop to each of these landmarks.

The landmarks are selected such that every user is within three hops of at least one

landmark. Then, the resultant coordinate system can be used to route to within three

hops of any destination user, and the bloom filters to reach the destination. Thus,

given a destination user’s coordinate, a user can first route to a landmark user who

is “near” the destination, and this landmark user can then use bloom filter routing

for the last few hops.

We describe these in terms of an interval I, which is the frequency with which the

bloom filters and coordinates are recomputed and updated. Typical values of I are

on the order of a few days.

8.5.3 Bloom filter routing

Bloom filters are a space-efficient probabilistic data structure for representing set

membership. When testing whether an element is in the set, bloom filters have no

false negatives, but have a configurable false positive rate [21]. In Ostra, each user U

makes available two separate bloom filters: a one-hop bloom filter F 1 and a two-hop

bloom filter F 2. The one-hop bloom filter contains all of the direct friends of U , and

the two-hop bloom filter contains all of U ’s friends-of-friends.
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Construction

If U is friends with A, B, and C, then F 1 for U would be a bloom filter with the

following contents: F (SA, SB, SC) where F (·) represents a bloom filter. However,

U enters a friend X in the bloom filter not using X’s public identity, but using an

alias for X (which we denote SX) that is only know to X’s friends. This ensures the

privacy of U ’s set of friends, since it is impossible to enumerate U ’s friends given only

the bloom filter and the public identifiers of nodes. Specifically, a user M , given U ’s

bloom filter, can determine if U is friends with another user only if M is also friends

with the other user herself. Moreover, since each user chooses unique parameters, it

is impossible to estimate, given two user’s bloom filters, the size of the intersection

among the users’ friends.

Users construct their two-hop bloom filters by requesting one-hop bloom filters

with a specified set of parameters from all of their friends. To construct a two-hop

bloom filter, a user then simply perform a bit-wise OR of all of their friends’ responses.

Additionally, whenever a user creates or removes links, the user resends its one-hop

bloom filter to each of her friends, so that they can update their two-hop bloom filters.

Use

When a user A wishes to discover a path to user B, A obtains B’s one-hop and

two-hop bloom filters using the lookup mechanism of the underlying communication

system. A first checks to see if any of her friends appear in B’s one-hop bloom filter.
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If so, this implies that these friends are direct friends with B. Thus, A has found a

path to B.

If none of A’s friends appear in B’s one-hop bloom filter, then A can be sure that

no two-hop path exists between herself and B. A then checks for three-hop paths by

testing to see if any of her friends appear in B’s two-hop bloom filter. If so, then A

knows that these friends are friends-of-friends of B. In this case, A has found the

first hop on a three hop path to B.

If none of A’s friends appear in B’s one-hop bloom filter or two-hop bloom filter,

this implies that no path shorter than three hops exists between A and B. In this

case, A uses the coordinates described next to find a path between herself and B.

False positives in bloom filters have the effect of artificially inflating path lengths.

A user may, due to a false positive, forward to another user who is no closer to the

destination. As we demonstrate in the evaluation, this case is rare and does not affect

the eventual success of the route computation.

8.5.4 Landmark routing

To find long paths, users advertise their coordinates, which indicate their location

in the trust network. A coordinate is a vector of distances, in hops, from a set of

landmark users in the trust network. A node U ’s coordinate might be {3M , 7N},

meaning U is 3 hops from M and 7 hops from N . We describe in Section 8.5.4 below

how landmarks are selected.
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Users determine their coordinate using their friend’s coordinates. For each land-

mark user, the distance from that landmark is the minimum of all of their friends’

hop distances plus 1. For example, if U is friends with A and B, and A’s coordinate

is {2M , 4N} and B’s coordinate is {4M , 7N}, then U ’s coordinate is {3M , 5N}. Addi-

tionally, U records her next-hop for each coordinate. (In the example, U would record

that A is the next hop towards M , and either A or B are the next hop towards N).

Friends periodically exchange their coordinates and repeat the same calculation.

Given a stable set of landmarks, the calculation converges to a stable set of coordi-

nates. In order to reduce the overhead of coordinate updates, new coordinates are

only published by users once per interval I.

Routing

When a user A computes a path to a user B, A obtains B’s coordinate through the

underlying communication system’s lookup service. A then looks for landmarks that

appear in both B’s and A’s coordinate, and are within three hops of B. If such a

landmark L exists, then A has found a path to B. This is because A knows how to

get to L (by routing via the next hop), and L is able to use B’s bloom filter to find

a path to B (since B is within 3 hops of L). Additionally, each user along the path

can check to see if B can be reached using bloom filter routing, attempting to detect

a shorter path.

If A is unable to find a shared landmark that is within 3 hops of B, then A is
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unable to route to B. This situation may arise if B is very weakly connected to

the network and is not within three hops of any landmark. Thus, users who are not

within three hops of a landmark are unreachable by other users via the coordinate

mechanism. However, they can still originate communication to other reachable users,

as well as receive communication from users within their three-hop radius.

Landmark selection

Next, we discuss how to select landmarks. Too few landmarks limits the reachability

of users in the network. Too many landmarks impacts the efficiency of the system, as

the sizes of the coordinates grow with each additional landmark. Ideally, one would

like to pick the minimal set of users to be landmarks, such that every user in the

network is within 3 hops of at least one landmark.

We use a simple distributed landmark selection scheme. Each user periodically

checks to see if she is within 3 hops of a landmark. If not, and the user is sufficiently

well connected to the network (i.e., she has at least Lmin friends), the user becomes

a landmark herself. This scheme guarantees that all sufficiently well connected users

are reachable, but it does not guarantee a minimally-sized set of landmarks.

8.5.5 Decentralized credit update

When the path in the trust network between the sender and receiver has been deter-

mined, the credit balances and bounds are updated in a decentralized manner during

authorization, classification, and token expiration.
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During authorization, the sender sends a signed authorization request message

along the path. This request includes a unique identifier, the public key of the desti-

nation, and the destination’s bloom filter and coordinate. Each user along the path (i)

forwards the message, (ii) updates the balances and bounds of the message’s incoming

and outgoing links according to the rules stated below, (iii) records the destination,

request identifier, previous hop, next hop, and expiration time of the request, and

(iv) sets a timer for the expiration time. When the destination receives the request,

it issues a signed token and sends it directly to the sender.

The link bounds are updated as follows. Each user along the path increments the

lower bound L for the next hop, as was done in the centralized Ostra described in

Section 8.2. Thus, the state of the network after a token is issued is exactly as shown

in Figure 8.4 (b).

During classification, the destination sends a signed classification message along

the path in the reverse direction. Each user checks if she has a record of a matching

authorization request. If so, the adjustments of the link bounds performed during

the authorization are undone, and the link balances are adjusted as described below.

The message is then forwarded, and the record is deleted. Otherwise, if no matching

record exists, the message is ignored.

The link balances are adjusted as was done in the centralized case. If the message

was classified as wanted, the link balances are not changed, as shown in Figure 8.4 (d).

However, if the message was classified as unwanted, each user raises the credit balance
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Figure 8.12 : Diagram of how credit exchange occurs when X sends to W , with the
penalty for dropping being one credit. The state of the link credits is shown (a) before
the message is sent, (b) before the message is classified, and (c) after the timeout T
if Z drops the message.

of the next hop in the path (the user to whom the original request was forwarded)

and lowers the credit balance of the previous hop (the user from whom the original

request was received). In this case, the resultant state of the network is shown in

Figure 8.4 (c).

When the timer associated with an authorization request expires, then the user

undoes the adjustments made to the link states during the authorization phase and

deletes the request record.

Because authorization and classification messages are forwarded by the Ostra

agents of users in the trust network, one concern is whether malicious users can

simply drop such incoming messages. To protected against this, we provide users

with an incentive to forward authorization requests and responses: users penalize the

next hop along the path by lowering the next hop’s credit if the message does not

reach its destination.

Each user along the path adjusts the next hop’s upper bound U by a penalty

amount during the authorization phase. When the message is classified by the des-
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tination, the bound is restored. Otherwise, if a user drops the message, each of the

users penalizes the next hop after the timeout T . An example is shown in Figure 8.12:

while the message is pending classification (b), both the upper bound U and the lower

bound L are changed to account for all possible outcomes. In the case in which Z

drops the message (c), X penalizes Y , and Y penalizes Z. Thus, Z is penalized for

dropping the message, whereas Y , who properly forwarded the message, has a neutral

outcome.

8.5.6 Security and privacy

One concern is whether malicious users can abuse the false positives in the bloom

filters to attract request to be routed through them. In order to maintain an accept-

able false positive rate, users select the number of hash functions and the bloom filter

length so that the number of bits set to 1 is less than a specified values Bmax. Any

bloom filters with more than Bmax bits set is ignored. Otherwise, malicious users

could simply create bloom filters consisting of all 1s, implying that they would be a

good choice when routing to any other user. Appropriate settings can be indepen-

dently determined based on the size of the their two hop neighborhood.

In Ostra, it is not possible to explore the trust network beyond two hops, due

to the use of private aliases. By requesting the bloom filters of many nodes, it is

however possible to determine the identities of friends of a friend with high probability.

However, many deployed social networks, such as FaceBook [49] and LinkedIn [95]
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do in fact already allow two-hop browsing, so there is no loss of privacy in many

applications.

8.6 Summary

In this chapter, we have presented Ostra, a system that leverages the difficulty in cre-

ating and maintaining links in social networks to prevent unwanted communication.

Ostra ensures that unwanted communication strains the originator’s trust relation-

ships, even if the sender has no direct relationship with the ultimate recipient of

the communication. A user who continues to send unwanted communication risks

isolation and the eventual inability to communicate. Finally, we demonstrated that

Ostra can effectively prevent unwanted communication upon a social network from a

real-world site.
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Chapter 9

PeerSpective: Leveraging Shared Interest

Over the last decade, the World Wide Web and Web search engines have fundamen-

tally transformed the way people find and share information. Recently, a new form of

publishing and locating information, known as online social networking, has become

very popular. While numerous studies have focussed on the hyperlinked structure of

the Web and have exploited it for searching content, few studies, if any, have examined

the information exchange in online social networks.

In the Web, explicit links called hyperlinks between content (typically pages) are

the primary tool for structuring information. Hyperlinks are used by authors to

embed a page in the Web of related information, by human users to manually browse

the Web, and by search engines to crawl the Web to index content, as well as to rank

or estimate the relevance of content for a search query.

In contrast to the Web, no explicit links exist between the content (typically

photos, videos, and blog postings) stored in social networks. Instead, explicit links

between users, who generate or publish the content, serve as the primary structuring

tool. For example, in social networking sites like MySpace [111], Orkut [121], and

Flickr [52], a link from user A to user B usually indicates that A finds the information

published by B interesting or relevant, or A implicitly endorses B’s content due to an
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established social relationship. Such social links enable users to manually browse for

information that is likely of interest to them, and could be used by search tools to

index and locate information.

In this chapter, we seek to understand whether the shared interest that these

social links represent can be exploited by systems. To answer this question, we design,

build, and deploy PeerSpective, a prototype system that leverages the shared interest

between users in a social network to produce more relevant Web search results.

Overall, we make three contributions. First, we compare the mechanisms for

content publication and location in the Web and online social networks. We argue

that search techniques could benefit from integrating the different mechanisms used

to find relevant content in the Web and social networks. Second, we present the

design of PeerSpective, a Web search system that leverages the shared interest from a

social network to improve Web search. Third, we present results from a deployment

of PeerSpective that support our contention that shared interest in social networks

can be leveraged in systems.

9.1 The Web versus social networks

We begin with a comparison of the Web and social networking systems, with respect

to their mechanisms for publishing and locating content.1 Publishing refers to the

mechanism by which content creators make information available to other users; it

1We ignore the mechanisms for distributing content between users as they are similar in both

the Web and many current online social networks. In both systems, the content is transferred using
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includes the way users relate their content to other content found in the system.

Locating refers to the mechanism by which users find information relevant to them;

it includes the ways users browse or search the content in the system.

9.1.1 The Web

In the Web, the content typically consists of Web pages written in HTML.

Publishing

Users publish content by placing documents on a Web server. An author places

hyperlinks into her page that refer to related pages. She may also ask other authors

to include links to her page in their pages. Often, such links are placed deliberately

to ensure the page is indexed and ranked highly by search engines.

Locating

Today, the predominant way of locating information on the Web is via a search engine.

Modern Web search engines employ sophisticated information retrieval techniques and

impressive systems engineering to achieve high-quality search results at massive scale.

The key idea behind search engines like Google is to exploit the hyperlink structure

of the Web to determine both the corpus of information they index and the relevance

of a Web page relative to a given query [122]. This approach has proven highly

HTTP over TCP, and the users navigate the systems using their Web browser.
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effective, because the incident links to a page are strong indicators of the importance

or relevance of the page’s content in the eyes of other users.

However, hyperlink-based search has some well known limitations. First, while

Web search is very effective for relatively static information, it may under-rate or

miss recently published content. For a new page to be noticed and appropriately

ranked by a search engine, (a) it must be discovered and indexed by the search

engine, (b) hyperlinks to the new page must be included in subsequently published

or edited pages, and (c) all such links must then be discovered by the search engine.

Second, as search engines determine the relevance of a page by its incident hyper-

links, their rating reflects the interests and biases of the Web community at large. For

instance, a search for “Michael Jackson” yields mostly pages with information about

the pop star. Computer scientists, however, may find the Web page of a professor

with the same name more relevant. Refining the search to find that page is possible

but can be tricky, particularly if one does not recall the professor’s current affiliation

or field of specialization.

Third, the hyperlink structure influences whether a page is included in a search

engine’s index. Unlinked pages and non-publicly accessible pages are not indexed.

Many other pages are not indexed because the search engine deems them insufficiently

relevant, due to their location in the hyperlink structure. As a result, obscure, special-

interest content is less likely to be accessible via Web search.
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9.1.2 Social Networks

Online social networking Web sites have recently exploded in popularity. Sites offer

services for finding friends like MySpace [111], Orkut [121], and Friendster [55], for

sharing photos like Flickr [52], for sharing videos like YouTube [167] and Google

Video [62], and for writing blogs like LiveJournal [97] and BlogSpot [20]. These

sites are extremely popular with users: MySpace claims to have over 246 million

users, while Facebook and Orkut boast 124 million and 67 million users, respectively.

MySpace recently has even been observed to receive more page hits than Google [112].

Examples of online social networking, though, have existed for much longer. For

instance, the common practice of placing content on the Web and sending its URL

to friends or colleagues is essentially an instance of social networking. Typically, the

author has no intention of linking the content; thus, the content remains invisible to

users other than the explicit recipients of the URL. The content is advertised not via

hyperlinks, but via links between users.

Publishing

Users publish content by posting it on a social networking site. Content is associated

with the user who introduced it, and with users who explicitly recommend the content.

Explicit links do not generally exist between content instances, and the content can

be of any type. Often, the content is temporal in nature (e.g., blog postings), non-

textual (e.g., photos and video clips), and may be of interest only to a small audience.
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Independent of the content, users maintain links to other users, which indicate trust

or shared interest.

Locating

The predominant method of finding information in online social networks is to nav-

igate through the social network, browsing content introduced or recommended by

other users. Some sites also provide keyword-based search for textual or tagged con-

tent. Additionally, other sites have ‘top-10’ lists showing the most popular content,

where the popularity is determined according to how often users have accessed the

content or based on explicit recommendations provided by users.

Moreover, social networks enable users to find timely, relevant and reliable infor-

mation. This is because users can browse adjacent regions of their social network,

which likely consist of users with shared interests or mutual trust. Since the content

can be non-textual, obscure, or short-lived, it may be hard to find by the way of Web

search. For example, blog posts are generally of short-term interest, videos and pho-

tos are non-textual, and all three types of content tend to be of interest to a limited

audience.

Content in social networks can also be rated rapidly, based on implicit and explicit

feedback of a large community of content consumers. In contrast, Web search relies

on the slower process of discovering hyperlinks in the Web, which are created by a

relatively smaller number of content authors. Since content rating in social networks
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is performed by the content consumers, rather than the producers, content introduced

into the network can by rated almost immediately.

9.1.3 Leveraging shared interest in Web search

Today, the information stored in different social networks and in the Web is mostly

disjoint. Each system has its own method of searching information. While search

companies have started to address this issue with specialized search tools for RSS-

based news feeds and for blogs, there is no unified search tool that locates information

across different systems. Social network-based search methods are not generally used

in the Web, though services like Google Scholar support search facilities tailored to a

specific community. Given that end users access both the Web and the social networks

from the same browsers, it seems natural to unify the methods to find information as

well.

In this chapter, we explore the idea of integrating Web search with search in

social networks, with the goal of leveraging the shared interest that exists between

users. We believe that such an approach could combine the strengths of both types

of systems: simultaneously exploiting the information contained in hyperlinks, and

information from implicit and explicit user feedback; leveraging the huge investment

in conventional Web search, while also ranking search results relative to the interests

of a social network; and locating timely, short-lived, non-textual or special-interest

information alongside the vast amounts of long-lived and textual information on the
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Web.

9.2 PeerSpective

Our discussion above suggests that (a) a growing body of Internet content cannot

be retrieved by traditional Web search as it is not well-connected to the hyperlinked

Web, and that (b) social network links can be leveraged to improve the quality of

search results. To explore this potential, we designed, built, and deployed the Peer-

Spective system. In this section, we describe the design of PeerSpective and discuss

our experimental results.

9.2.1 Design

PeerSpective is designed as a lightweight HTTP proxy. Thus, each PeerSpective user

configures their Web browser to use PeerSpective as a HTTP proxy, which allows

PeerSpective to observe the content of pages that the client browses to. PeerSpective

decodes these pages, parses out the text for know document formats (currently HTML

and PDF), and then indexes the documents with the enclosed text.

When the user performs a Google search, the proxy transparently forwards the

query to both Google, as normal, as well as the PeerSpective proxies of other users in

the social network. Each proxy (including the user’s local proxy) executes the query

on the local index and returns the result to the sender.

The results are then collated and presented alongside the Google results as shown
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in Figure 9.1. To do so, PeerSpective modifies the returned HTML from Google in

order to include the PeerSpective results. Thus, to use PeerSpective, the user does

not have to do any work, beyond the initial setup of PeerSpective. The PeerSpective

index is populated as the user browses the Web normally, and Web search results are

automatically inserted into the Google results page.

Figure 9.1 : Screenshot of our PeerSpective search interface. Results from the dis-
tributed cache appear alongside the normal Google results.

Our PeerSpective implementation is built using the Lucene [98] text search engine

and the FreePastry [54] peer-to-peer overlay. We configured Lucene to follow Google’s

query language, so that search qualifiers such as ‘+’, ‘-’, and quotes would be consis-

tent across both systems. We also configured Lucene to automatically remove pages

older than 30 days in order to prevent the index from getting stale.

We ranked the results obtained from PeerSpective by multiplying the Lucene score

of a search result by the Google PageRank of that result and adding the scores from all

users who previously viewed the result. Thus, PeerSpective’s ranking takes advantage

of both the hyperlinks of the Web (via Google’s PageRank) and the social links of

the user community.
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9.2.2 Privacy

One potential concern with the PeerSpective architecture is the privacy of the users.

PeerSpective indexes browsed Web pages, which sometimes contain sensitive informa-

tion. In order to mitigate the privacy impact of PeerSpective on users, we configured

PeerSpective to only serve HTTP, and specifically not HTTPS, traffic. As many

privacy-sensitive services, such as online banking and email, use HTTPS, this pre-

vents such sites from being indexed by PeerSpective. We also configured PeerSpective

to respect the “Cache-Control” header returned by servers by only indexing pages that

were labeled “Cache-Control: public”.

When using PeerSpective, users only see aggregated results, and are not aware

of which user returned which result. Thus, users in PeerSpective have k-anonymity,

where k is the size of the group running PeerSpective. Finally, we configured a simple

control panel for PeerSpective that allowed users to browse their local index, and to

remove any pages that they did not wish to be included.

9.2.3 Experimental methodology

We recruited a group of 10 graduate students and researchers the Max Planck Institute

for Software Systems to run PeerSpective. We present measurements and experiences

from a one month long experimental deployment. During this time, the 10 users issued

439,384 HTTP requests covering 198,492 distinct URLs. Only 25.9% of the HTTP

requests were of content type text/html or application/pdf, meaning they could
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be indexed by our proxy. The remaining requests consisted of images, javascript, and

other miscellaneous types.

Given that our user base is small, includes the authors, and represents a single

community with highly specialized interests, we cannot claim that our results would

be representative of a deployment with a larger, diverse user base. However, we

believe our results indicate the potential of social network-based Web search.

9.2.4 Limits of hyperlink-based search

Even the best Web search engines do not index content that is not well linked to

the general Web or content that is not publicly available. So, our first goal is to

understand and quantify the Internet content that is viewed by users, but is not

captured by the search engines. We would also like to know how much of this content

is already indexed by another user in PeerSpective.

To estimate the limits of hyperlink-based search, we check what fraction of the

URLs actually visited by the users are not indexed by Google. There are a number

of reasons why a page may not be indexed by Google: (a) the page could be too new,

such a as blog posting or news article; (b) the page could be in the deep web and not

well-connected enough for Google to choose to crawl it; or (c) the page could be in

the dark web, where it is not publicly available or is not referred to by any other page.

For each HTTP request, we checked whether Google’s index contains the URL,

and if some peer in PeerSpective has previously viewed the URL. Since search engines
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only index static HTML content, we considered only URLs of indexable content types

that did not have any GET or POST parameters and ended in either .html or .htm.

Further, we discarded URLs with an auto-refresh feature (such as the scoreboard sites

for sports), as they would artificially bias the results against Google. This left us with

6,679 requests for 3,987 URLs.

Our analysis shows that Google’s index covers only 62.5% of the requests, repre-

senting 68.1% of the distinct URLs. This implies that about one third of all URLs

requested by our users cannot be retrieved by searching Google! Our analysis also

showed that the union of the PeerSpective peer indexes covers about 30.4% of the

requested URLs. While PeerSpective achieves only half of the coverage of Google’s

index, it does this with a much smaller size: at the end of the experiment, the Peer-

Spective indexes contained 51,410 URLs, compared to Google’s index of over 8 billion

URLs.

Additionally, we found that 13.3% of the URLs viewed were contained in Peer-

Spective but not in Google’s index. These documents were not available via Google’s

search engine but had been requested before by someone in the peer network. This

increase in coverage amounts to a 19.5% improvement by PeerSpective compared to

normal Google search. It is worth noting that, for our small social network of com-

puter science researchers, this improvement in coverage was possible by adding just

a few thousand URLs to a Google index containing billions or URLs.

Our results naturally raise the question, what are these documents that are of a of
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URL Too new Deep web Dark web

jwz.livejournal.com/413222.html 3 3

www.mpi-sws.mpg.de/ ... /pres0031.html 3

sandiego.craigslist.org/w4m/179184549.html 3 3

edition.cnn.com/ ... /italy.nesta/index.html 3

72. ... .163/status.asp 3

www.itv.com/news/ ... a8e4b6ea.html 3

www.stat.rice.edu/∼riedi/ ... /target21.html 3

amarok.kde.org/forum/index.php/board,9.20.html 3 3

Table 9.1 : Sample URLs that were not indexed by Google. We manually inspected
the URLS to determine the likely reason for not being in Google’s index, as discussed
in Section 9.2.4.

interest to our users, but are not indexed by Google? We manually analyzed a number

of such URLs and show a random sample of them in Table 9.1. We additionally list

the likely reasons why each URL does not appear in Google’s index.

9.2.5 Benefits of social network-based search

Another challenge facing search engines is ranking all the indexed documents in the

order of their relevance to a user’s query. Ranking is crucial for search, as most users

rarely go beyond the first few query results [146]. Our goal here is to study how often

users click on query results from PeerSpective as opposed to Google. As shown in

Figure 9.1, our users are presented with results from both Google and PeerSpective

for every Google query.
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During the course of the month, we observed 1,730 Google searches. While

Google’s first result page contained an average of 9.45 results, our smaller PeerSpec-

tive index resulted in an average of 5.17 results on the first page. Of the 1,730 queries,

1,079 (62.3%) resulted in clicks on one or more search result links, 307 (17.7%) were

followed by a refined query, and after the remaining 344 (19.8%), the user gave up.

We found that 933 (86.5%) of the clicked results were returned only by Google, 83

(7.7%) of the clicked results were returned only by PeerSpective, and 63 (5.7%) of the

clicked results were returned by both. This amounts to a 9% improvement in search

result clicks over Google alone, as 83 of the search result clicks would not have been

possible without PeerSpective.

It should be kept in mind that this 9% improvement over Google, considered

by many to be the gold standard for Web search engineering, was achieved by a

simple, very small, social network-based system quickly put together by three systems

researchers over a period of a few days. Based on our early experience, we feel that

these results suggest inherent advantages of using social links for search, which could

be exploited better with more careful engineering.

9.3 Discussion

To better understand the cases when PeerSpective search results outperform Google

results, we manually analyzed the corresponding queries and result clicks. We show

a random sample of the data we analyzed in Table 9.2. We observed that the reasons
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for clicks on PeerSpective results fall into three categories, described below.

9.3.1 Disambiguation

Some search terms have multiple meanings depending on the context. Search engines

generally assume the most popular term definition. Social networks can take advan-

tage of the fact that communities tend to share definitions or interpretation of such

terms. An example for disambiguation is shown in Table 9.2, where a user’s query

for “bus” yielded the local bus schedule, as it is the page with this keyword that is

most visited by local users in the network.

Query Page clicked on D R S

bus Saarbrücken bus schedule 3 3

stefan FIFA World Cup site 3

peter Peter Druschel’s home page 3

serbian currency XE.com exchange rates 3

coolstreaming CoolStreaming INFOCOM paper 3

moose Northwest Airlines’ contract of carriage 3

münchen Peter Druschel’s homepage 3

Table 9.2 : Sample search queries for which PeerSpective returned results not in
Google. The results are categorized into the three different scenarios of disambigua-
tion (D), ranking (R), and serendipity (S) discussed in Section 9.3.
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9.3.2 Ranking

Search engines rank all relevant documents and return the top of the resulting list.

Social networks can inform and bias the ranking algorithm, since nearby users in the

network often find similar sets of pages relevant. An example we observed is a search

with the term “coolstreaming”. A Google search ranks most highly popular sites (such

as Wikipedia) discussing the CoolStreaming technique for P2P streaming of multi-

media content. PeerSpective ranked the INFOCOM paper describing CoolStreaming

at the top, as it is most relevant to our researchers.

9.3.3 Serendipity

While browsing the Web, users often discover interesting information by accident,

clicking on links that they had not intended to query for. This process, termed

serendipity, is an integral part of the Web browsing experience. Search results from

PeerSpective provide ample opportunity for such discoveries. For example, while

looking for information about “München” (Munich), one of our users discovered that

a fellow researcher attended school in München, thus finding a convenient source of

information about the city.

9.4 Summary

Online social networking enables new forms of information exchange in the Inter-

net. First, end users can very easily and conveniently publish information, without
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necessarily linking it to the wider Web. Second, social networks make it possible to

locate and access information that was previously exchanged by “word of mouth”,

that is, by explicit communication between individuals. Third, unlike Web search

engines, which organize the world of information according to popular opinion, social

networks can organize the world of information according to the shared interest of

smaller groups of individuals.

In this chapter, we explored the potential of the integration of the Web and social

network search technologies. In a small-scale experiment, we found that a significant

fraction of URLs requested by our users cannot be retrieved by today’s most popular

search engine, as the URLs are too new, of interest to only a small population, or not

publicly available. However, we found that by including pages browsed to by friends

in a social network, the index coverage could be increased significantly. Moreover, we

found that by including these pages in search results, a noticeable improvement in

click-rate was observed, underscoring the potential for leveraging the shared interest

in social networks.
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Chapter 10

Conclusion

Originally conceived to solve computational problems in science, defense, and busi-

ness, computer systems now augment many human activities, including communica-

tion and social interaction. Today, millions of people use information technology to

work, play, read, learn, socialize, connect, and express themselves. This broad range

of new applications inspired the work in this thesis, where we have measured and

analyzed the properties of online social networks, and designed, deployed, and eval-

uated new information systems that exploit the properties of these networks. In the

following sections, we describe the high-level contributions of this thesis and discuss

potential future research directions.

10.1 Summary

Recently, online social networks have exploded in popularity. MySpace (over 246

million users) and Facebook (over 124 million users) are examples of wildly popular

networks that are used to find and organize contacts; numerous other sites are used

to share photos, videos, blogs, and news items. Despite the massive popularity of

online social networks, surprisingly little is known about how people are using them

to connect and share content. To better understand the structure of online social
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networks, we conducted a large-scale measurement study that collected data on the

social networks of four popular sites, covering over 11 million users and 328 million

links. Surprisingly, the results showed that the social network graphs contained in

different sites shared a number of graph-theoretic properties, even though the sites

have very different goals, mechanisms, and policies. These results have a number of

implications for system designers. For example, all the networks contain a dense core

of popular users that holds the network together; any information flowing through

the network must traverse this core, implying that these users will naturally have

significant influence on the spread of information. This was the first study to collect

data at large scale and the first study to collect data on multiple social networks.

Moreover, we were the first to make the collected data available to the research

community; the data is currently in use by more than 100 research groups.

The static graph structure present in online social networks reflects the process

by which users create links; to understand this process, it is necessary to observe how

the networks change and grow over time. Thus, we conducted a second measure-

ment study that collected data from multiple online social networks by crawling the

network daily for more than three months. This was the first study to collect net-

work growth data at significant scale and at fine temporal resolution. The analysis of

this growth data provides intuitive explanations for a number of the observed struc-

tural properties. The results of our study can be used as the basis for constructing

synthetic networks that reflect both global and local characteristics of online social
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networks, leading to better structural and growth models. We also made the data

in this study available to the research community and it is currently in use by more

than 25 research groups.

We have also examined the community structure of online social networks. We

found that individual users are often members of multiple overlapping communities,

but that existing algorithms for detecting communities do not perform well on real

data from an online social network. We addressed this limitation by devising a new

algorithm that can accurately detect multiple overlapping communities when given

information about a small subset of the community members. In practice, even if only

10% of users provide community information to social networking sites, the remaining

community members can be determined by this algorithm with high accuracy. We

demonstrated that this approach can identify communities at a range of scales on a

university network: small communities such as sports teams, larger communities such

as dormitories, and even very large communities such as every student matriculating

in the same year.

While valuable, the measurement studies described above are not an end per

se, rather, they are a first-order concern when trying to build better systems. For

example, links between users in online social networks can represent trust (e.g., users

who know each other in the offline world) and shared interest (e.g., users who belong

to the same community). We have built two new information systems that exploit

each of these properties to solve open problems – these are briefly described below.
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First, we demonstrated how to use social networks to address the problem of un-

wanted communication. Internet-based communication systems such as email, IM,

VoIP, online social networks, and content-sharing sites allow communication at near

zero marginal cost to users. Unfortunately, this property can be abused for the pur-

pose of spam, unsolicited marketing, propaganda, or disruption of legitimate commu-

nication.

Using insights on trust in online social networks, we presented Ostra, a novel

mechanism that exploits trust relationships among users to block unwanted commu-

nication. Ostra uses an existing network, such as a social network, to connect senders

and receivers via chains of pairwise relationships, keeping a credit score associated

with each link in the network. A user’s links are penalized when she sends unwanted

communication, and users whose links have all run out of credit must wait to send

messages. Ostra is novel in that it is the first system that can, without assuming

strong user identities, effectively ensure that having multiple identities does not ben-

efit the attacker. Ostra is sufficiently general that it can be used not only on social

networks, but on any network in which links require some effort to form and maintain.

Second, we showed how social networks can be used to mitigate the privacy and

access challenges that arise when the amount of shared content is growing at an ex-

ponential rate. In particular, the growing amount of shared content on online social

networks is leading to two pressing challenges. First, since users are sharing increas-

ingly personal information, the issue of privacy and access control is becoming more
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important. Second, since the volume of shared content is growing at an exponential

rate, finding relevant information is becoming more difficult.

Using insights from our measurement studies, we proposed using communities

to address these growing dilemmas. Communities can aid in both access control

(since they represent a natural middle ground between a user’s immediate friends

and the rest of the world) and in information retrieval (since they often represent

sets of users with shared interests). To demonstrate this approach in a deployed

system, we presented the design, implementation, and deployment of PeerSpective,

a system that uses a social network to provide better search results than socially-

oblivious search engines like Google. A preliminary version of PeerSpective showed

a 7% improvement in click-rate over existing Web search technologies, underscoring

the potential of leveraging communities in social networks.

10.2 Future work

So far, we have studied how users interact on today’s online social networks and ob-

served how the trust and shared interest that links represent can be used to solve

systems problems. The recent explosion in popularity of online social networks un-

derscores the continuing integration of computing in our daily lives, a trend that

provides a number of interesting research challenges. In the following paragraphs, we

outline a few of these challenges.

In this thesis, we have focused exclusively on the user graph of social networking
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sites; many of these sites allow users to host content, which in turn can be linked

to other users and content. Establishing the structure and dynamics of the content

graph is an open problem, the solution to which will enable us to understand how

content is introduced in these systems, how data gains popularity, how users interact

with popular versus personal data, and whether these trends can be hardened to

prevent deliberate manipulation. Similarly, the data we collected on the growth of

online social networks can be used to test previously proposed growth models to see

how well they match the observations, as well as to guide the development of new

models based on empirical data.

Users often share very personal information on today’s online social networks,

with little regard for who will be allowed to view the content. Anecdotal evidence

suggests that this often results in unintended consequences, ranging from public em-

barrassment to job loss. The underlying problem is, essentially, ensuring privacy for

users while allowing them to share information and knowledge freely. This problem

has aspects that span the areas of security, systems, and interface design. Thus, one

challenge is to design mechanisms that enable the wide-spread sharing that users de-

sire while ensuring that users understand who else is able to access their content. One

potential first step to solving this problem is to use communities as an abstraction

for expressing privacy policies, allowing users to share content with more than just

their friends but not necessarily with the entire world.

Another problem concerns ensuring the relevance of information obtained. In prior
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information sharing networks, ranking systems have proved invaluable for finding rel-

evant information – the most well-known example is PageRank for Web documents.

However, the content shared in emerging systems like online social networks is dif-

ferent from previous systems: the content items rarely have links to other content

items; rather, the links connect the users themselves. Thus, a new approach to find-

ing relevant information is needed that can compute the reliability of a given piece of

information based on the combined reputation of the users who created or endorsed

it. Whereas a Web page linked to by nytimes.com is likely important (because many

important pages link to nytimes.com), it is unclear whether this same transitive im-

portance will apply to links between users. Additionally, since this computation is

based on a social network of users, the links between whom may represent shared

interest, it may be possible to easily compute customized rankings for each user’s

interests. The PeerSpective system represents a first step in this direction, however,

the general problem of finding relevant content remains an open challenge.
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[123] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the

overlapping community structure of complex networks in nature and society.

Nature, 435(7043):814–818, June 2005.



237

[124] Josiane Xavier Parreira, Debora Donato, Sebastian Michel, and Gerhard

Weikum. Efficient and decentralized PageRank approximation in a peer-to-

peer web search network. In Proceedings of the 32nd International Conference

on Very Large Data Bases (VLDB’06), Seoul, South Korea, September 2006.

[125] PayPerPost. http://www.payperpost.com.
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