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ABSTRACT
Knowing the physical location of a mobile device is crucial
for a number of context-aware applications. This informa-
tion is usually obtained using the Global Positioning System
(GPS), or by calculating the position based on proximity of
WiFi access points with known location (where the posi-
tion of the access points is stored in a database at a central
server). To date, most of the research regarding the cre-
ation of such a database has investigated datasets collected
both artificially and over short periods of time (e.g., dur-
ing a one-day drive around a city). In contrast, most in-use
databases are collected by mobile devices automatically, and
are maintained by large mobile OS providers.

As a result, the research community has a poor under-
standing of the challenges in creating and using large-scale
WiFi localization databases. We address this situation using
the deployment of over 800 mobile devices to real users over
a 1.5 year period. Each device periodically records WiFi
scans and its GPS coordinates, reporting the collected data
to us. We identify a number of challenges in using such
data to build a WiFi localization database (e.g., mobility of
access points), and introduce techniques to mitigate them.
We also explore the level of coverage needed to accurately
estimate a user’s location, showing that only a small subset
of the database is needed to achieve high accuracy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
Localization is an increasingly important trend on mo-

bile devices today. Mobile applications use localization to
provide users with accurate driving directions, recommen-
dations for local points of interest (e.g., restaurants), and
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even as a form of authentication [10]. Determining a mo-
bile device’s location is typically accomplished in one of two
ways: First, mobile devices can use various satellite-based
systems (GPS, Galileo, or GLONASS). While most mobile
devices today ship with dedicated GPS hardware, relying on
GPS alone for determining location has a number of down-
sides: obtaining an initial GPS fix introduces non-negligible
delay, and causes significant power consumption.

Second, mobile devices can use WiFi localization. In brief,
WiFi localization works by having the mobile device listen
for advertised WiFi networks (each WiFi access point peri-
odically announces its unique identifier or BSSID, as well as
the name of the network, referred to as SSID), and report
that list to a central server. The server then computes the
most likely location of the mobile device and returns the re-
sult. Thus, for WiFi localization to be e↵ective, the server
must have a pre-computed database of WiFi access points
(APs) and their locations. Unfortunately, building such a
database is time-consuming and expensive: the database
must be comprehensive (covering many locations) and up-
to-date (as new APs are deployed and existing ones move).

Originally, the aim of such databases was to enable in-
door positioning through finger-printing [3, 9, 20] and later
through RF-modeling [15, 5]. Most recent work on indoor lo-
calization achieves sub-meter accuracy by rotating the sens-
ing device to simulate directional antennas [14]. As the APs
became more wide spread it became possible to use them for
outdoor localization as well. The databases were then cre-
ated by manually going to di↵erent locations and recording
the observed APs (often termed wardriving) [4, 18, 7, 11].
Today, however, these databases are often built by having
dedicated software on the mobile devices collect and report
data back both in indoor [21, 27] and outdoor [2, 19, 26]
contexts. Therefore, creating such a database at scale is typ-
ically only the domain of mobile OS providers (e.g., Apple,
Google) or dedicated companies (e.g., Skyhook Wireless).

As a result, the research community currently has a rel-
atively poor understanding of large-scale WiFi localization
databases. In this paper, we address this situation by pro-
viding insights into the challenges underlying the creation of
such a database, and the trade-o↵s in using them. We first
collect a data set based on a deployment of over 800 mobile
phones to students at a university in Copenhagen, Denmark
for over 1.5 years. These phones run a stock Android OS
with custom collection software instrumented to gather GPS
location and overheard WiFi APs.

Overall, we collect over 1.8M simultaneous measurements
of WiFi APs and GPS location, and observe more than 1.3M



unique WiFi APs. Many of the APs are only seen a small
number of times, so we focus on the 376K APs that we
observe at least five times. To the best of our knowledge,
this represents the most comprehensive data set of this kind
that has been examined in the research literature. Using this
data set, we build a WiFi localization database for Copen-
hagen. We discuss and identify a number of key challenges
and issues in doing so:

The scale of the dataset. Most existing studies were
performed either in controlled environments or over a short
time. Here, we show that the WiFi landscape is constantly
changing, new access points are added and old ones are
moved to new locations or retired.

Mobility. With increasing trend of mobile WiFi APs, such
as MiFi devices, routers on buses and trains, and mobile
phones which also serve as hotspots, we observe that discov-
ering and filtering mobile APs presents a significant chal-
lenge. Failing to properly filter these can lead to gross errors
when estimating a device’s location.

Noisy data. Unsurprisingly, relying on commodity hard-
ware introduces noise into the measurements of location,
signal strength, and detectability of APs, which must be
handled when inferring the location and mobility of APs.

We also explore using the database we build to estimate
the locations of devices given a set of overheard APs. Specif-
ically, we examine the trade o↵ between the number of APs
in the database and the estimation accuracy. We show that
knowing the location of only a small fraction of all the APs
(3.7%) is actually needed to locate users to within 15 meters
75% of time.

2. METHODS
We now describe the data we use to build our WiFi local-

ization database.

Phone deployment. We use data collected by the Copen-
hagen Networks Study experiment [23]. In this experiment,
students opt-in to receive a smartphone in exchange for
agreeing to let us use to collect data (e.g., Bluetooth and
WiFi scan results, location estimations, call and SMS meta-
data, etc). The students agree to use the device as their
primary phone. The experiment has been reviewed and ap-
proved by the Danish Data Protection Agency, and partic-
ipants are provided with a web interface where they can
access and remove any of their collected data.

The data analyzed in this work covers a period from
September 2013 through March 2015 and involves more than
800 students, with 300–600 participants active on any given
day. Because of software failures and physical destruction
some phones had to be replaced, and thus 1,000 devices were
used in total. The primary focus of the Copenhagen Net-
works Study experiment is the study of human interactions,
hence the setup was not explicitly optimized towards dis-
covering the locations of APs. Nevertheless, we show in this
paper that the WiFi scans and GPS data allow us to do so.

Data collection app. On the phones, we install an app
based on the Funf framework [1]. It starts automatically
when the phones boot, so the users do not need to take
action to begin collecting and uploading data.

The app collects data both actively (it requests location
and WiFi updates every 5 minutes) and opportunistically
(whenever another app requests updates). In order to save
the battery, most of the location data is obtained using the
network and/or fused provider (i.e., an existing WiFi local-
ization database). Since we intend to use the GPS mea-
surements as ground truth, we focus only on the 10.5% of
location readings that are provided by the GPS hardware.

As a consequence, while the median sampling period be-
tween GPS readings is 1 second, only 29% of per-user hourly
bins have at least one GPS sample (i.e., we only know the
GPS location of users in 29% of the hours, on average). This
distribution is a consequence of apps like Google Maps that
either use GPS data constantly or not at all.

Since we are studying WiFi localization databases, in the
remainder of the paper we focus on the 1,794,473 GPS sam-
ples which happened within the same second1 as a WiFi
access point scan. According to our measurements, a single
WiFi scan lasts approximately 500ms and this time does
not depend on the number of saved networks.

It is important to note that the securing the wireless net-
work does not make it impossible to scan it: regardless of
the encryption, each router broadcasts its unique identifier
and the name of the network in clear text.2

Filtering data. In the 567 days of observations, our partici-
pants observed 7,203,471 unique APs, out of which 1,320,838
(18.3%) were scanned at least once in the same second as
a GPS estimation. However, the majority of these APs
were observed with a GPS estimation a very small number
of times: 944,904 (71.5%) have less than five observations.
Thus, in the remainder of the paper, we focus only on the
375,934 APs that were observed at least five times together
with a GPS estimate in the same second to build our WiFi
localization database.

3. BUILDING THE DATABASE
We now examine the collected data, with the goal of build-

ing a WiFi localization database.

3.1 Estimating the locations of APs
The primary challenge we face is estimating the positions

of the APs, given our WiFi scan data. Intuitively, this seems
straightforward, but AP mobility presents a number of chal-
lenges. In general, we expect APs to fall into one of three
categories:

• Static. We expect that many APs are static and have
a fixed location that does not change over the course
of the experiment.

• Moved. Given that our data covers 1.5 years, some
APs may remain static for long periods of time, but
may be moved a small number times. For example,
businesses may redeploy APs, and residents of Copen-
hagen may change apartments, taking their APs with
them.

1
Allowing for even a short time di↵erence would introduce noise into

the measurements. For example, a car driving within city speed limits

moves at 14 m/s. Because of uneven and sparse sampling, it is not

feasible to calculate the speed of the measuring device and discard

the scans that were performed by phones in motion.

2
We note that is possible to hide a network by disabling the ac-

cess point’s SSID broadcasts (though this provides little actual se-

curity [17]). Routers configured this way still broadcast their BSSID

and are present in our dataset.



• Mobile. We also expect to see some APs that show
no static behavior; these could include APs located on
buses and trains, as well as MiFi devices and mobile
phone hotspots.

We categorize APs into these three classes by clustering the
observed WiFi scan data. Specifically, every time a GPS es-
timation happens in the same second as a WiFi scan, we add
the latitude/longitude to the list of observations of each AP
visible in the scan. We then categorize the APs as follows:

Static access points. We first compute the geometric me-
dian [16] of all locations associated with each AP; if “most”
of the observations are “close” together, we then declare the
AP to be static, and declare the geometric median to be the
AP’s location.3

However, selecting the right thresholds for “most” and
“close” to use is more complex than it may seem, as it is
di�cult to determine the operating range of an AP. First,
devices compliant with popular standards can be expected
to have a range from 20 meters indoors (the 802.11 standard)
to 250 meters outdoors (802.11n) [25]. We therefore set the
radius for a static AP to be no more than 300 meters. Sec-
ond, due to the complex nature of signal propagation, the
range can be shortened or enlarged due to characteristics
of the local environment (e.g. buildings, narrow corridors).
Third, GPS devices are known to sometimes return erro-
neous readings [6]; to deal with these, we allow for up to 5%
of locations associated with an AP to be in a bigger distance
than 300 meters from the median position.

We classify the APs that satisfy this condition (95% of
readings within 300 meters) as static, and find that 263,281
(70%) of the APs fall into this category.

Moved and mobile access points. We assume that the
rest of the APs are either moved or mobile. To disambiguate
the two cases, we repeat the clustering above but allow for
multiple such clusters.

Specifically, we group any two locations within 600 me-
ters (twice the radius) into the same cluster, and discard
any clusters that have fewer than 5 measurements. If at
least 95% of the points can be associated with one of the
clusters, and the clusters can be cleanly separated in time,
we categorize the AP is moved. We observe that 1,087
(0.3%) APs fall into this category. Otherwise, we categorize
the AP as mobile. We observe that 111,566 (29.7%) APs
fall into this category.

3.2 Classification evaluation
We now briefly evaluate our classification. As a sanity

check, in Figure 1 we show the locations of all APs with the
SSID of dtu, which is the SSID of APs installed at our uni-
versity. The left panel shows the APs on a metro area scale;
each group of APs is correctly placed at one of the univer-
sity campuses and out-of-campus buildings. The right panel
shows the APs around the main campus of the university.
While this is not a definite confirmation of the accuracy
of our approach, this example of 1,100 APs shows that we
should not expect too many gross errors.

We evaluate our method of identifying the mobile APs by
verifying the classification of APs that are nearly certainly

3
Following the definition of accuracy from the Android Location API,

we calculate the radius around the median within which 68% of points

are enclosed [8].

Figure 1: Sanity check of the method: estimated loca-

tions of APs belonging to Technical University of Den-

mark On the metro area scale (left panel), di↵erent campuses
and out-of-campus buildings are visible, while none of the APs is
estimated to be at a location not associated with the university.
A detailed view of the main campus (right panel) reveals that the
APs are grouped within perimeter.

static and those that are nearly certainly mobile. First, we
choose APs with eduroam SSID as examples of APs which
we expect to be stationary, since these are the names of APs
at universities. Out of 3,654 such APs with at least 5 obser-
vations, 3,117 (85.3%) were identified as static and 9 (0.2%)
as moved. Universities are known to relocate APs, which
may partially explain why our accuracy is not 100%. Next,
we choose APs with Bedrebustur or Commutenet SSIDs as
examples of APs we expect to be mobile, since these are
the o�cial names of networks on buses and trains in Copen-
hagen. Out of 650 such APs with at least 5 observations, 642
(98.8%) were identified as mobile, and 8 (1.2%) as static.

It is important to note that access points with more obser-
vations are less likely to be classified as mobile (e.g., 29.7%
of access points seen at least 5 times are classified as mobile,
while only 10.0% of access points seen at least 200 times
are classified as mobile). This e↵ect is likely due to the the
biased sampling of access points by users (i.e., static access
points are more likely to be sampled many times, due to
their static nature).

Overall, our results suggest that our AP classification
methodology is likely to have high accuracy.

3.3 Accuracy of database
Next, we explore two aspects of the accuracy of the WiFi

localization database: (1) how the number of measurements
of a given AP a↵ect our estimate of its location, and (2)
how the number of measurements of a given AP a↵ects our
ability to classify it as mobile or fixed location.

Number of measurements needed. While we cannot
measure the error of location estimation without knowing
the ground truth location, we can analyze how the location
estimation changes with the number of observations. We
select 46,000 APs classified as static and with more than 50
measurements. For each of these APs we select N random
observations, calculate the distance between the location of
the AP estimated from all the observations and the estima-
tion based on N random observations. We vary N from 1
to 50 and repeat the process 10 times.

In Figure 2 we show that even in case of APs with fixed
location, using too few measurements leads to significant de-
viations in the estimated position. For example, calculating
the position of the AP based on only two observations leads



Figure 2: Too few observations lead to estimation errors.

We randomly subsample the measurements of 40,000 static APs
to measure the error caused by fewer measurements. The shaded
bands represent percentiles 1-99, 5-95, and 25-75. To ensure es-
timation error below 50 meters in 99% cases, 15 observations are
necessary. Five observations, which we use as minimal thresh-
old, are enough to estimate the location of an AP with error not
higher than 50 meters in 95% of cases.

to a 50 meter error, on average. 15 observations are neces-
sary to ensure that the error is not larger than 50 meters in
99% of cases.

Mobility and sample size. Because of the prevalence
of APs that are mobile, too few observations might lead
to their incorrect classification as stationary. To evaluate
this, we select 20,000 APs classified as mobile and more
than 50 observations. For each of them we select N random
observations and re-run our classification procedure. We
vary N from 2 to 50 and repeat the process 10 times.

Because we only allow 5% of observations to be outside
of the 300 meter radius around the median, with too few
observations we might classify a fixed AP as mobile. We
repeat the described experiment but with fixed APs and
calculate the fraction of misclassified fixed location APs as
a function of N .

Figure 3: Too few observations lead to misclassifications

between mobile and static APs. We randomly subsample
the observations of 46,000 static APs and 20,000 mobile APs to
measure the classification error caused by too few observations.
With just 5 observations, 46% of mobile APs are classified as
static and of 5% of static APs are misclassified as mobile. Given
the class imbalance, that results in 18% misclassification rate.

Figure 4: Longitudinal observations reveals mobile and

moved APs. Shown are the observed locations of a mobile AP
installed on a bus (top left), an moved AP (top right), an AP
moved 6 times (bottom left), and an AP with ambiguous behavior
(bottom right).

As we show in Figure 3, the more observations we base
our estimations on, the more accurate the results are. The
“spikes” at 20 and 40 APs are caused by the fact that the 5%
noise threshold translates to 0 noisy samples with less than
20 observations, 1 noisy sample with 20-39 observations, etc.

Taken together, these results suggest that building an ac-
curate WiFi localization database requires large amounts of
data collected continuously over time. To better visualize
the importance of longitudinal observation, we provide sev-
eral examples of APs with di↵erent patterns of observation.
The top left panel of Figure 4 shows a clear example of a
mobile AP; in this case, it is installed in a bus. In such cases,
a few observations should be su�cient to correctly classify
the AP as mobile. In other cases however—as shown in top
right and bottom left panels of Figure 4—a long observa-
tion period is beneficial. While in the top right example not
knowing the new location of the AP would lead to errors at
the range of hundreds of meters, the bottom left example
shows an AP whose location changes hundreds of kilometers
during the observation period. Still in some cases, even a
long observation period might not be enough to determine
the nature of the AP, as shown in the bottom right panel:
the AP seems to have two major placements, but they over-
lap in time, so we classify this AP as mobile.

4. USING THE DATABASE
With our WiFi localization AP database built, we now

turn to using the database to estimate the location of a user.
In brief, when a user requests their location to be calculated,
they present the database with (a) a list of the AP SSIDs
and BSSIDs that it current observes, and (b) the received
signal strength (RSSI) of each of these APs. We first explore



Figure 5: Using a population of students from one uni-

versity results in uneven sampling. Each red point on the
maps represents a single AP. The inferred locations of APs in the
city center indicate that sampling is not uniform across space:
the routers seem to be located along the streets, not inside the
buildings.

how the signal strength relates to the distance to AP before
examining our ability to estimate the user’s location.

4.1 Estimating distance from APs
RSSI. As radio waves propagate through space they become
attenuated; the amount of attenuation can be used to calcu-
late the distance d. There are a number of models describing
the attenuation of WiFi signals and one of the simplest is
the log-distance path loss (LDPL) model [12], from which
the distance can be calculated using Equation 1:

dij = 10
(
Pi�pij
10�i

)
(1)

In Equation 1 mobile user j is at distance dij (m) from
access point i and sees the signal strength of pij (dBm). Pi

is the power transmitted by the AP. The path loss exponent
�i captures the rate of fall of RSSI around the AP i which
depends on the environment the router is in [13]. If the
transmitted power and path loss exponent are known, three
non-collinear measurements of the AP should theoretically
be enough to determine its position using trilateration.

However, accurately estimating the distance given RSSI
has been shown to be a challenging problem. First, be-
cause the transmitted power and the propagation loss expo-
nent are di↵erent for every router and need to be calculated,
two more measurements are necessary to solve the system
of LDPL equations. Second, since the receiver character-
istics vary greatly even among devices of the same make
and model [24, 9, 5], more measurements are necessary to
compensate for individual characteristics [5]. Third, due to
the inherent noise in the measurements and a dynamically
changing environment (e.g., people walking by) the RSSI
reading can be very noisy in practice. For example, our pre-
vious work observed that the RSSI reading can deviate as
much as 10 dB from the mean even when the source and
destination are static [22]. We note that while there are
methods that take advantage of the variable attenuation in-
troduced by a human body [28], they require accelerometer
data to be collected as well (which we were unable to collect
in our experiment).

Nevertheless, RSSI has been reported in other studies of
war-driving as a useful, if somewhat noisy, proxy for dis-
tance [4]. To verify this finding, we randomly select 5.6M
observations of 30,000 APs classified as static and present

Figure 6: RSSI (left) and response rate (right) as func-

tions of distance from the AP. The shaded bands repre-
sent percentiles 1-99, 5-95, and 25-75, the bold line represents
the median value. There is a weak correlation between RSSI
and distance with Spearman’s correlation of ⇢ = �0.23 for dis-
tances from 0 to 100 meters, and no correlation for larger dis-
tances. There is a strong correlation between response rate and
distance (⇢ = �0.64) for distances from 0 to 100 meters, and
a weaker (⇢ = �0.30) correlation for larger distances. Using
non-specialized hardware raises a number of challenges, includ-
ing noisy measurements of RSSI and location. As a result, RSSI
is not a reliable proxy for distance.

RSSI as function of distance from the inferred location in
the left panel of Figure 6. There is only a weak correlation
between the measured signal strength (⇢ = �0.23) and the
inferred location, and that correlation disappears for dis-
tances larger than 100 meters. The figure also reveals that a
strong RSSI can be used as an indicator of close distance, but
a weak RSSI does not indicate that the APs is far away. We
use Spearman’s rank correlation coe�cient, instead of Pear-
son’s product-moment correlation because we cannot expect
a linear relationships between RSSI and distance. Pearson’s
⇢ values are lower in the analyzed relationships.

The low correlation could still be caused by the di↵er-
ences between routers (the emitted power and the influence
of obstacles). We therefore calculate the correlation between
distance and RSSI for each router separately. We find that
about 35% of the routers with at least 50 observations have
statistically significant, negative relation between distance
and RSSI with mean ⇢ = �0.36. On the other hand, 16% of
such routers have a positive relation between the RSSI and
distance, with mean ⇢ = 0.32. All reported correlations are
statistically significant with pval < 0.01.

Response rate. Here, we reevaluate the response rate as
a proxy of distance from the AP, first suggested in [4]. Re-
sponse rate at distance d is defined as the fraction of WiFi
scans at distance d from the position of the AP which re-
port finding the AP. We select a random subsample of 11,700
static APs with at least 50 observations. Then, for each AP,
we find all scans recorded at distance d from its inferred lo-
cation, varying the d from 0 to 1,000 meters. We define the
response rate of a AP at distance d as a fraction of scans
in which the AP was found. In the right panel of Figure 6
we show the correlation of distance and response rate. As
expected, the response rate drops as the distance from the
inferred location increases, with a much stronger correla-
tion than RSSI (⇢ = �0.55 for distances up to 100 meters).
However, to measure the response rate, one must perform
multiple scans at the same distance from the router.



4.2 Estimating the location of users
We now turn to estimating the locations of users using

our database of the location of APs. Unfortunately, while
response rate provides a much better correlation with AP
distance, it is not ideal for estimating users locations: when
estimating locations, doing so quickly is of paramount im-
portance, and estimating response rate requires a number of
scans. Thus, in the approach below, we simply use RSSI,
and leave leveraging response rates to future work.

Knowing the list of APs recently observed, along with
their RSSI, we explore estimating the user’s location using
four di↵erent approaches:

Mean coordinates. We ignore the RSSI and calculate
the mean latitude and mean longitude among all the APs
for which we know the location.

Geometric median. We ignore the RSSI and calculate
the geometric median of the APs for which we know the
location.

Mean weighted by RSSI. Each AP is assigned a weight
based on the RSSI, with the weight defined by RSSI+100.4

We examine instances where di↵erent numbers of APs are
observed in the scans, selecting 100 random instances be-
tween 0 and 30 observed APs. In the left panel of Figure 7,
we show the cumulative error distributions for estimating
the user’s location using these three methods. The approach
with geometric median location works best, followed closely
by mean weighted by RSSI. While there are some di↵erences
in the performance of the three selected methods, they are
negligible: all methods locate more than 50% of scans within
13 meters from the ground truth, 90% of scans within 70 me-
ters, and 95% of scans within 120 meters.

In the right panel of Figure 7 we compare our best method
(based on the geometric median) to the estimations which
we acquired from the Google Geolocation API. We show the
median error as a function of the number of APs used for
the estimation. While our approach performs slightly bet-
ter than Google’s location API, the performance is similar.
Google’s crowd sourced data is collected using a wide variety
of uncalibrated hardware (all of our phones are exactly the
same model), which might lead to more measurement noise
for Google’s database. Since the number of APs in each scan
is highly correlated with the population density [22], and the
estimation errors are lower with more routers available, we
expect that the location estimations will be best in densly
populated areas.

4.3 Applicability of the localization database
In total, we identified 263,281 APs as static, constituting

only 3.7% of the total of 7.2M unique APs observed. We re-
visit the original dataset with all the scans collected to verify
whether this small set of APs can be used for localization
in the broader context. We randomly select 51M of those
scans and find that at least two of our static APs are visible
in 73% of all scans, meaning we would provide an average
error of 15 meters for 73% of all WiFi scans we observed.

The median error of 15 meters means that certain
problems—such as car navigation—cannot be solved using
WiFi signals alone. There are, however, a number of ap-

4
The range of RSSI given by Android is -99dBm to 0dBm.

Figure 7: Location estimation accuracy does not strongly

depend on the method. All methods perform similarly, and
are able to locate 50% of scans with error no larger than 13 meters.
Additionally, we compare our estimates to the results from the
Google Geolocation API in the right panel; while our approach
performs better, the di↵erences are small.

plications where the advantages outweigh the problems re-
lated to a relatively high positioning error. First, using geo-
localized WiFi routers enables tracking the location of mo-
bile devices with sub-minute time resolution at low costs in
terms of battery or data consumption. As a consequence,
it becomes possible to accurately measure for example time
spent at each location, or detect whether the user changed
their location in between two location scans pointing to the
same place. Second, we show it is feasible to store a lookup
database on the mobile devices themselves, thus enabling
positioning without access to the Internet. Our database
for the Greater Copenhagen area is only 9 MB, it could be
a part of a mobile application targeted at tourists.

5. SUMMARY
Being able to quickly and e�ciently determine the loca-

tion of a mobile device is becoming increasingly important.
While mobile devices often contain dedicated GPS hardware
to do so, they often opt to instead rely on WiFi localiza-
tion databases as they are much quicker and more power-
e�cient. However, building such a database requires access
to large-scale WiFi scan data over time, and is typically only
available to the large mobile OS vendors.

In this work, we explored the opportunities and challenges
in building such a database using a deployment of over 800
mobile devices. We found that mobility of access points was
a key challenge in ensuring that the database is accurate;
a significant fraction (30%) of APs are actually non-static.
However, we found that using just the APs that we are con-
fident are static, we can provide a location estimate for 73%
of all scans with a median accuracy of 15 meters. Overall,
our results provide the largest-scale look at WiFi localization
databases that we know of in the research community.
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