POST: A Secure, Resilient, Cooperative Messaging System

A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. S. Wallach Rice University

X. Bonnaire, P. Sens, J.-M. Busca, L. Arantes-Bezerra University of Paris 6 (LIP6)

HotOS 2003
Motivation

- Provide a generic, serverless platform for user-driven collaborative applications (email, IM, calendars, etc.)
- Show that a wide range collaborative services can be supported by one serverless platform securely, with high availability
- Demonstrate that p2p paradigm is mature enough to support secure, resilient, “mission-critical” applications
POST Architecture

- Provides three basic services to applications:
 - Secure single-copy message storage
 - User metadata based on single-writer logs
 - Event notification

- These basic services are sufficient to support a variety of collaborative applications
Sample Application: ePOST

- Email service based on POST
 - Email is a well-understood, demanding application
 - Availability of realistic workloads

- Interoperates seamlessly with existing email protocols and clients (IMAP, SMTP, Outlook, etc…)

- Participating organizations remain autonomous
 - Local storage controlled by local participants by scoped insertion

- Provides better spam prevention
 - Crypto-based message authentication and privacy
 - Sender overhead is proportional to the number of recipients
 - Receivers pull messages
Experimental Setup

- Implemented ePOST prototype
 - Performs well

- Realistic ePOST storage requirements?
 - Examined email usage by ~250 members of Rice CS department
 - Conservative assumptions:
 - No deletion
 - Local insertion
 - Full replication with 10 replicas
 - All messages are unique
ePOST Storage Requirements

![Graph showing ePOST Storage Requirements over time](image)

- **Disc Capacity**
- **ePOST**

The graph illustrates the increasing storage requirements for ePOST from 2003 to 2008.
Status and Conclusions

- Ongoing work:
 - We plan to begin using prototype as primary email system this summer
 - Answer open questions
 - Appropriate level of replication
 - Measures to ensure failure independence
 - Administrative cost

- Also working on IM and calendar applications on POST

- Related effort: p2p incentives for fair sharing of resources
Single-copy Message Storage

- Achieved using convergent encryption
- Allows multiple copies of encrypted data to be coalesed

\[X \rightarrow_{MD5} key \rightarrow_{DES} \{X\}_{H(X)} \rightarrow data \]
User-specific Metadata

- Based on the Ivy file system

\[
\text{location: } H(\text{DATA}_n) \\
\text{location: } H(\text{DATA}_{n-1}) \\
\text{location: } H(\text{DATA}_1)
\]
User Notification

- Suppose A and B want to send to C
User Notification

- Suppose A and B want to send to C
User Notification

- Suppose A and B want to send to C
User Notification

- Suppose A and B want to send to C
User Notification

- Suppose A and B want to send to C
User Notification

- Suppose A and B want to send to C
User Notification

- Suppose A and B want to send to C