Systems and Networks C Bootcamp Project 1: Basic C Usage
CS3600 Fall 2014 July 28, 2014

This C bootcamp project is due at 11:59:59pm on September 4, 2014 and is worth 1.25% of your grade.
You must complete it by yourself, and no slip days may be used.

1 Preliminaries

As this is the first project of the semester, there are two steps that you must complete prior to
turning in this assignment. If you do not complete these, the course staff will not be able to
determine whose submitted project is whose, and you will receive a 0 for the project. That would
be unfortunate.

1.1 Registering with the turnin system

We will be using the CS3600 turnin system in order to submit assignments this semester. If you
have not already done so, you must register for the system with your student ID. To do so, ssh
into any CCIS Linux machine and execute

bash$ /course/cs3600f14/bin/register-student ID
About to register user 'USER’ with student ID "ID’. 1Is this correct? [yn]

where ID is your student ID, with any leading Os removed. For example, if your NEU student ID
is 003044, you would enter

bash$ /course/cs3600f14/bin/register-student 3044

Double-check that the userid and student ID are correct; if so, type y and Enter. If not, type n
and Enter. If it was successful, you will see the message

bash$ /course/cs3600f14/bin/register-student ID

About to register user 'USER’ with student ID "ID’. Is this correct? [yn] y
User "USER’ is now successfully registered for CS3600 with student ID "ID’.
bash$

If you see any other message (in particular, a message with "Error" in it), it has not succeeded.
Email the instructor with the error message if you are not able to diagnose the problem.

1.2 Registering with Piazza

We will be using the Piazza bulletin board system for questions, problems, and announcements
throughout the semester. You will be expected to check it at least every few days, participate
actively, and use it as a first place to post questions related to the projects or homeworks in this
course. However, you have to register for it. If you have not done so, please do so by going to
http://piazza.com/northeastern/spring2014/cs3600/and registering as a student.


http://piazza.com/northeastern/spring2014/cs3600

2 Description

There are several goals for this assignment. First, you will get a chance to familiarize yourself
with the C programming language. Second, you will learn how to use the CCIS Linux resources,
and with the turnin and grading scripts we will be using for the semester. Your assignment is to
complete four C problems. For each of the problems, we give you starter code and ask you to fill
in various functions using the skills you learned in the first day of C Bootcamp. Note that you
should only make changes inside of the functions marked with TODO; you should not change
any other code.

2.1 SSH

Your project is designed to be run on the CCIS Linux machines; you’'re welcome to work on your
own machine, but it must compile and run without any problems on CCIS Linux machines when
graded. If you are not familiar with SSH, you can either work on one of the Linux machines in
the WVH 102 lab, or you can learn about SSH (Google is your friend). Free SSH clients exist for
Windows (e.g., PuTTY), Mac OS X (built-in Terminal application), and Linux (built-in terminals).

2.2 Starter code

The starter code for the assignment is available in /course/cs3600f14/code/c-projecti1. You
must use this code as a basis for your project. Provided is a cp1-problem[1,2,3,4].c code and
a Makefile. The Makefile is configured to correctly compile your code and to test your code on
sample input.

To get started, you should copy down this directory into your own local directory. You should
first ssh over to any CCIS Linux machine (e.g., bubbles.ccs.neu.edu). We recommend doing the
following, making a directory in your CCIS home directory for all of your CS3600 work, and then
copying down the C Bootcamp Project 1 code:

bash$ mkdir ~/cs3600
bash$ cp -r /course/cs3600f14/code/c-projectl ~/cs3600
bash$ cd ~/cs3600/c-projectl

3 Completing your project

This project consists of four problems, each located in cp1-problem[1,2,3,4].c. Each file con-
tains documentation for what is expected, and you should only add code where a TODO line
exists. If you are unsure of any specifications (e.g., what to do in corner cases), first consult the
documentation before asking on Piazza.

3.1 Compiling your code

You can compile the starter code by running make. This will try to compile all four of your home-
work problems, in order. If the compiler raises an error, it will print the error to the terminal. A
successful compile looks like



bash$ make

gcc -std=c99 -00 -g -Wall -pedantic -Werror -o cpl-probleml cpl-problemi.
gcc -std=c99 -00 -g -Wall -pedantic -Werror -o cpl-problem2 cpl-problem2.
gcc -std=c99 -00 -g -Wall -pedantic -Werror -o cpl-problem3 cpl-problem3.
gcc -std=c99 -00 -g -Wall -pedantic -Werror -o cpl-problem4 cpl-problem4.
bash$

O O o O

At this point, you will have executable files cp1-problem1, cp1-problem2, ... in your directory.
An unsuccessful compile might look something like

bash$ make

gcc -std=c99 -00 -g -Wall -pedantic -Werror -o cpl-problem1 cpl-problemi.c
cpl-probleml. In function Omain0:

cpl-problemi.c:32: error: too few arguments to function OfactorialQ
cpl-problemi.c: At top level:

cpl-probleml.c:55: error: conflicting types for Ofactorial0
cpl-probleml.c:14: note: previous declaration of Ofactorial0 was here
make: *xx [cpl-probleml1] Error

bash$

C
C
C
C

You will have to learn how to diagnose and fix C compile errors (note that the line numbers are
included in error messages, and a short description of the error is provided). If you can not
understand the cause of an error message, try searching on Google or posting on Piazza.

If you wish to only compile one of the homework problems (rather than them all), you can run

bash$ make cpl1-problem2
gcc -std=c99 -00 -g -Wall -pedantic -Werror -o cpl-problem2 cpl-problem2.c
bash$

3.2 Running your code

One you have successfully compiled your project, you will have executable files cp1-problemt,
cpl-problem2, ... in your directory. You can run each of them by running

bash$ ./cpl-problem1 <args>
You can also delete any compiled code and object files by running make clean (this will not delete
your source code, don’t worry).

3.3 Testing your code

We have included basic test scripts to check the output of your code against our reference solution.
To run the test script, simply type

bash$ make test

This will compile your code and then test all four problems against the reference solution. If any
errors are detected, the test will stop and an error will be printed. For example, you might see
something like



bash$ make test
./test cpl-problem1 cpl-problem2 cpl-problem3 cpl1-problem4
Testing cpl-problemi
Trying with ’./cpl1-problem1 1’ [FATL]
Expected output:
Success: The factorial of that number is: 1

Received output:
Success: The factorial of that number is: 0

make: *x* [test] Error 255
bash$

This indicates that the test with input . /cp1-problem1 1 was expected to return 1, but instead
returned 0 (note the difference between the expected output and the received output). We include
a few sample tests, but these are by no means exhaustive. We expect that you will create additional
test to ensure that your programs behave as expected.

3.4 Debugging your code

You should also strive to learn how to use the GNU debugger. We’ll go over this more in class later
in the week, but if you’d like to get started, a good quick reference is available at
http://www.csl.mtu.edu/cs2141/www/gdb.html, with many more resources available online.

4 Implementation hints

You should develop your client program on the CCIS Linux machines, as these have the necessary
compiler and library support. You are welcome to use your own Linux/OS X machines, but you
are responsible for getting your code working, and your code must work when graded on the CCIS
Linux machines. If you do not have a CCIS account, you should get one ASAP in order to complete
the project. Your code must be -Wall clean on gcc. Do not ask the TA for help on (or post to the
forum) code that is not -Wall clean unless getting rid of the warning is what the problem is in the
first place.

You will want to make sure that you break your program up into modules, such that each
module represents a sensible type abstraction. If you have questions on how to do this, please
come see me or the TA.

5 Submitting your project

Once you are done, you should submit your (thoroughly documented) code. You can do so by run-
ning the /course/cs3600f14/bin/turnin script. Assuming you created a c-project1 directory
as described in Section[2.2] you can simply run

/course/cs3600f14/bin/turnin c-projectl ~/cs3600/c-projecti

If you placed your code in a different location, you can turn it in by running


http://www.csl.mtu.edu/cs2141/www/gdb.html

[course/cs3600f14/bin/turnin c-projectl <dir>

Where <dir> is the name of the directory with your submission. Regardless, when run, you should
see output that looks like

bash$ /course/cs3600f14/bin/turnin c-projectl ~/cs3600/c-projecti

Added file
Added file
Added file
Added file
Added file
Successfully

Makefile (157 bytes)

cpl-probleml.c (1392 bytes)

cpl-problem3.c (2163 bytes)

cpl-problem2.c (2594 bytes)

cpl-problem4.c (2163 bytes)

submitted c-projectl for user amislove (confirmation ZiwKE5).

Submitted a total of 5 files (8469 bytes) in 0 directories.

The script will print out every file that you are submitting, make sure that it prints out all of the
files you wish to submit. Finally, make sure you see the “Successfully submitted" link at the end.
You should also receive an email confirmation of your submission. If you receive any other error
messages, email the instructor with the error message if you are not able to diagnose the problem.

6 Advice

A few pointers that you may find useful while working on this project:

* Check the Piazza forum for question and clarifications. You should post project-specific
questions there first, before emailing the course staff.

* Make sure you see the “Successfully submitted" message when submitting—if you do not
see that and see an error message instead, do not ignore it!

* Finally, get started early and come to the TA/instructor lab hours. You are welcome to come
to the lab and work, and ask the TA any questions you may have.



	Preliminaries
	Registering with the turnin system
	Registering with Piazza

	Description
	SSH
	Starter code

	Completing your project
	Compiling your code
	Running your code
	Testing your code
	Debugging your code

	Implementation hints
	Submitting your project
	Advice

