
CS 3700 
Networks and Distributed Systems

© 2014, Alan MIslove

Lecture 17: Client-Server Systems
(Partially off slides by David Anderson at CMU, Ken Thompson at Cornell)

Client-Server Computing

99% of all distributed systems use client-server
architectures!

Today: look at the client-server architectures

Detailed example: The Web

2

Client-Server systems
HTTP
Scaling up: CDNs

3 Outline

Client-Server concept

Server program is shared by many clients

RPC protocol typically used to issue requests
RPC = Remote Procedure Call

Server may manage special data, run on an especially
fast platform, or have an especially large disk

Client systems handle “front-end” processing and
interaction with the human user

4

Server and its clients
5

Examples of servers

Network file server

Database server

Network information server

Web server

Domain name service

Microsoft Exchange (email) server

Kerberos authentication server

6

Business examples

Risk manager for a bank: tracks exposures in various
currencies or risk in investments

Theoretical price for securities or bonds: traders use
this to decide what to buy and what to sell

Server for an ATM: decides if your withdrawal will be
authorized

7

Bond pricing example

Server receives market trading information, currency
data, interest rates data

Has a database of all the bonds on the market

Client expresses interest in a given bond, or in finding
a bond with certain properties

Server calculates what that bond (or what each bond)
should cost given current conditions

8

Why use a client-server approach?

Pricing parameters are “expensive” (in terms of
computing resources) to obtain: must monitor many
data sources and precompute many time-value of
money projections for each bond

Computing demands may be extreme: demands a very
high performance machine

Database of bonds is huge: large storage, more
precomputation

9

On client side

Need a lot of CPU and graphics power to display the
data and interact with the user

Dedicated computation provides snappy response
time and powerful decision making aids

Can “cache” or “save” results of old computations so
that if user revisits them, won’t need to reissue
identical request to server

10

Summary of typical split

Server deals with bulk data storage, high perf.
computation, collecting huge amounts of background
data that may be useful to any of several clients

Client deals with the “attractive” display, quick
interaction times

Use of caching to speed response time

11

Typical issues in design

Client is generally simpler than server: may be single-
threaded, can wait for reply to RPC’s

Server is generally multithreaded, designed to achieve
extremely high concurrency and throughput.

Much harder to develop

Reliability issue: if server goes down, all its clients may
be “stuck”. Usually addressed with some form of
backup or replication.

12

Client-Server systems
HTTP
Scaling up: CDNs

13 Outline

HTTP Basics

HTTP layered over bidirectional byte stream

Interaction
Client sends request to server, followed by response
from server to client
Requests/responses are encoded in text

Stateless
Server maintains no information about past client
requests

14

HTTP Request

Request line
Method

GET – return URI
HEAD – return headers only of GET response
POST – send data to the server (forms, etc.)
…

URL (relative)
E.g., /index.html

HTTP version

15

GET /foo/bar.html HTTP/1.1

HTTP Request

Request headers (each ended with CRLF)
Acceptable document types/encodings
From – user email
If-Modified-Since
Referrer – what caused this page to be requested
User-Agent – client software
Cookie - previously stored information
Content-Length - Size of data (only on POST)

Blank-line (CRLF)
Body

16

HTTP Request (visual)
17

Lecture 19: 2006-11-02

HTTP Request Example

GET /blah.html?foo=bar HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE
5.5; Windows NT 5.0)

Host: www.intel-iris.net
Connection: Keep-Alive

18

http://www.seshan.org/
http://www.seshan.org/
http://www.seshan.org/

HTTP Response

Status-line
HTTP version
3 digit response code

1XX – informational
2XX – success

200 OK
3XX – redirection

301 Moved Permanently
303 Moved Temporarily
304 Not Modified

4XX – client error
404 Not Found

5XX – server error
505 HTTP Version Not Supported

Reason phrase

19

Lecture 19: 2006-11-02

HTTP Response (cont.)

Headers
Location – for redirection
Server – server software
WWW-Authenticate – request for authentication
Allow – list of methods supported (get, head, etc)
Content-Encoding – E.g x-gzip
Content-Length
Content-Type
Expires
Last-Modified

Blank-line
Body

20

HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix)
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
Cache-Control: private

...DATA...

21

Web pages

Multiple (typically small) objects per page
E.g., each image, JS, CSS, etc downloaded separately

Single page can have 100s of HTTP transactions!

File sizes
Heavy-tailed
Most transfers/objects very small

Problem: Browser can’t render complete page until all
downloaded

22

HTTP 0.9/1.0

One request/response per TCP connection
Simple to implement

Disadvantages
Multiple connection setups ! three-way handshake
each time

Several extra round trips added to transfer
Multiple slow starts

23

Single Transfer, One Image
24

Server
SYN

SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from
disk

FIN

Server reads from
disk

Client opens TCP connection

Client sends HTTP request for
HTML

Client parses HTML
Client opens TCP connection

Client sends HTTP request for
image

Image begins to arrive

More Problems

Short transfers are hard on TCP
Stuck in slow start
Loss recovery is poor when windows are small
SYN/ACK overhead is highest

Lots of extra connections
Increases server state/processing

Server also forced to keep TIME_WAIT connection state
Why must server keep these?
Tends to be an order of magnitude greater than # of active
connections, why?

25

Persistent Connections

Multiplex multiple transfers onto one TCP connection

Client keeps connection open
Can send another request after the first completes
Must announce intention via a header

Connection: keepalive
Server must say how long response is, so client knows
when done

Content-Length: XXX

26

Persistent Connection Example
27

Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from
disk

Client sends HTTP request for
HTML

Client parses HTML
Client sends HTTP request for
image

Image begins to arrive

DAT
Server reads from
disk

DAT

HTTP Caching

Clients often cache documents
Challenge: update of documents
If-Modified-Since requests to check

HTTP 0.9/1.0 used just date
HTTP 1.1 has an opaque “etag” (could be a file signature, etc.) as well

When/how often should the original be checked for
changes?

Check every time?
Check each session? Day? Etc?
Use Expires header

If no Expires, often use Last-Modified as estimate

28

Example Cache Check Request

GET / HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT

If-None-Match: "7a11f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compatible)

Host: www.intel-iris.net

Connection: Keep-Alive

29

Example Cache Check Response

HTTP/1.1 304 Not Modified

Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix)

Connection: Keep-Alive

Keep-Alive: timeout=15, max=100

ETag: "7a11f-10ed-3a75ae4a”

30

Content in today’s Internet

Most flows are HTTP
Web is at least 52% of traffic
Median object size is 2.7K, average is 85K (as of 2007)

HTTP uses TCP, so it will
Be ACK clocked
For Web, likely never leave slow start

Is the Internet designed for this common case?
Why?

31

Client-Server systems
HTTP
Scaling up: CDNs

32 Outline

Evolution of Serving Web Content
33

In the beginning…
! …there was a single server
! Probably located in a closet
! And it probably served blinking text

Issues with this model
! Site reliability
■ Unplugging cable, hardware failure, natural disaster

! Scalability
■ Flash crowds (aka Slashdotting)

Replicated Web service
34

Use multiple servers

Advantages
! Better scalability
! Better reliability

Disadvantages
! How do you decide which server to use?
! How to do synchronize state among servers?

Load Balancers
35

Device that multiplexes requests 
across a collection of servers
! All servers share one public IP
! Balancer transparently directs requests 

to different servers
How should the balancer assign clients to servers?
! Random / round-robin
■ When is this a good idea?

! Load-based
■ When might this fail?

Challenges
! Scalability (must support traffic for n hosts)
! State (must keep track of previous decisions)
■ RESTful APIs reduce this limitation

Load balancing: Are we done?
36

Advantages
! Allows scaling of hardware independent of IPs
! Relatively easy to maintain
Disadvantages
! Expensive
! Still a single point of failure
! Location!

Where do we place the load balancer for Wikipedia?

Popping up: HTTP performance
37

For Web pages
! RTT matters most
! Where should the server go?

For video
! Available bandwidth matters most
! Where should the server go?

Is there one location that is best for everyone?

Server placement
38

Why speed matters
39

Impact on user experience
! Users navigating away from pages
! Video startup delay

Why speed matters
40

Impact on user experience
! Users navigating away from pages
! Video startup delay
Impact on revenue
! Amazon: increased revenue 1% for every

100ms reduction in PLT
! Shopzilla:12% increase in revenue by

reducing PLT from 6 seconds to 1.2 seconds
Ping from BOS to LAX: ~100ms

Strawman solution: Web caches
41

ISP uses a middlebox that caches Web content
! Better performance – content is closer to users
! Lower cost – content traverses network boundary once
! Does this solve the problem?

No!
! Size of all Web content is too large
■ Zipf distribution limits cache hit rate

! Web content is dynamic and customized
■ Can’t cache banking content
■ What does it mean to cache search results?

What is a CDN?
42

Content Delivery Network
! Also sometimes called Content Distribution Network
! At least half of the world’s bits are delivered by a CDN
■ Probably closer to 80/90%

Primary Goals
! Create replicas of content throughout the Internet
! Ensure that replicas are always available
! Directly clients to replicas that will give good performance

Key Components of a CDN
43

Distributed servers
! Usually located inside of other ISPs
! Often located in IXPs (coming up next)
High-speed network connecting them
Clients (eyeballs)
! Can be located anywhere in the world
! They want fast Web performance
Glue
! Something that binds clients to “nearby” replica servers

Examples of CDNs
44

Akamai
! 147K+ servers, 1200+ networks, 650+ cities, 92 countries
Limelight
! Well provisioned delivery centers, interconnected via a private

fiber-optic connected to 700+ access networks
Edgecast
! 30+ PoPs, 5 continents, 2000+ direct connections
Others
! Google, Facebook, AWS, AT&T, Level3, Brokers

Inside a CDN
45

Servers are deployed in clusters for reliability
! Some may be offline
■ Could be due to failure
■ Also could be “suspended” (e.g., to save power or for upgrade)

Could be multiple clusters per location (e.g., in multiple
racks)
Server locations
! Well-connected points of presence (PoPs)
! Inside of ISPs

Mapping clients to servers
46

CDNs need a way to send clients to the “best” server
! The best server can change over time
! And this depends on client location, network conditions, server

load, …
! What existing technology can we use for this?

DNS-based redirection
! Clients request www.foo.com
! DNS server directs client to one or more IPs based on request IP
! Use short TTL to limit the effect of caching

http://www.foo.com

CDN redirection example
47

choffnes$ dig www.fox.com

;; ANSWER SECTION:

www.fox.com. 510 IN CNAME www.fox-rma.com.edgesuite.net.

www.fox-rma.com.edgesuite.net. 5139 IN CNAME a2047.w7.akamai.net.

a2047.w7.akamai.net. 4 IN A 23.62.96.128

a2047.w7.akamai.net. 4 IN A 23.62.96.144

a2047.w7.akamai.net. 4 IN A 23.62.96.193

a2047.w7.akamai.net. 4 IN A 23.62.96.162

a2047.w7.akamai.net. 4 IN A 23.62.96.185

a2047.w7.akamai.net. 4 IN A 23.62.96.154

a2047.w7.akamai.net. 4 IN A 23.62.96.169

a2047.w7.akamai.net. 4 IN A 23.62.96.152

a2047.w7.akamai.net. 4 IN A 23.62.96.186

DNS Redirection Considerations
48

Advantages
! Uses existing, scalable DNS infrastructure
! URLs can stay essentially the same
! TTLs can control “freshness”

Limitations
! DNS servers see only the DNS server IP
■ Assumes that client and DNS server are close. Is this accurate?

! Small TTLs are often ignored
! Content owner must give up control
! Unicast addresses can limit reliability

